Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-07T13:19:43.114Z Has data issue: false hasContentIssue false

Simulation of pulse-induced nonthermal dynamics of molecules encapsulated in carbon nanotubes

Published online by Cambridge University Press:  02 January 2013

Yoshiyuki Miyamoto*
Affiliation:
Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology, Umezono, Tsukuba, Ibaraki 305-8568, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Density functional theory, which can be used for simulating the properties of materials in the electronic ground state, was extended to time-dependent density functional theory (TDDFT). This extension enabled us to simulate nonthermal (nonequilibrium) dynamics under electronic excitation as well as to analyze and predict phenomena observed in experiments using femtosecond lasers. In this invited paper, a numerical simulation based on TDDFT for laser-induced dynamics of molecules encapsulated in carbon nanotubes (CNTs) is presented. Fast motion of molecules can be induced by short strong laser pulses that cause electronic excitation. The role of CNTs is not simply trapping the molecules but also modulating the electric field of the laser pulse. This knowledge of microscopic-scale processes will be useful when using CNTs as nanoscale test tubes in future photochemistry experiments in confined spaces for the synthesis of exotic materials. The numerical scheme and detailed results of the simulation are also presented here.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hohenberg, P. and Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).CrossRefGoogle Scholar
Kohn, W. and Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
Ihm, J., Zunger, A., and Cohen, M.L.: Momentum-space formalism for the total energy of solids. J. Phys. C: Solid State Phys. 12, 4409 (1979).CrossRefGoogle Scholar
Niikura, H., Légaré, F., Hasbani, R., Bandrauk, A.D., Ivanov, M.Y., Vilieneuve, D.M., and Corkum, P.B.: Sub-laser-cycle electron pulses for probing molecular dynamics. Nature 417, 917 (2002).CrossRefGoogle ScholarPubMed
Zare, R.N.: Laser control of chemical reactions. Science 279, 1875 (1998).CrossRefGoogle ScholarPubMed
Shimotsuma, Y., Hirao, K., Kazansky, P.G., and Qiu, J.: Three-dimensional micro- and nano-fabrication in transparent materials by femtosecond laser. J. Appl. Phys. 44, 4735 (2005).CrossRefGoogle Scholar
Runge, E. and Gross, E.K.U.: Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997 (1984).CrossRefGoogle Scholar
Ehrenfest, P.: Bemerkung fiber die angeniäherte Gfiltigkeit der klassisehen Mechanik innerhalb der Quantenmechanik. Z. Phys. 45, 455 (1927). [in German].CrossRefGoogle Scholar
Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).CrossRefGoogle Scholar
Iijima, S. and Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 (1993).CrossRefGoogle Scholar
Ajayan, P.M. and Iijima, S.: Capillarity-induced filling of carbon nanotubes. Nature 361, 333 (1993).CrossRefGoogle Scholar
Smith, B.W., Monthioux, M., and Luzzi, D.E.: Encapsulated C60 in carbon nanotubes. Nature 396, 323 (1998).CrossRefGoogle Scholar
Kitaura, R. and Shinohara, H.: Endohedral metallofullerenes and nano-peapods. Jpn. J. Appl. Phys. 46(3A), 881 (2007).CrossRefGoogle Scholar
Maniwa, Y., Kataura, H., Abe, M., Udaka, A., Suzuki, S., Achiba, Y., Kira, H., Matsuda, K., Kadowaki, H., and Okabe, Y.: Ordered water inside carbon nanotubes: Formation of pentagonal to octagonal ice-nanotubes. Chem. Phys. Lett. 401, 534 (2005).CrossRefGoogle Scholar
Okazaki, T., Iizumi, Y., Okubo, S., Kataura, H., Liu, Z., Suenaga, K., Tahara, Y., Yudasaka, M., Okada, S., and Iijima, S.: Coaxially stacked coronene columns inside single-walled carbon nanotubes. Angew. Chem. Int. Ed. 123, 4955 (2011).CrossRefGoogle Scholar
Yanagi, K., Iakoubovskii, K., Kazoui, S., Minami, N., Maniwa, Y., Miyata, Y., and Kataura, H.: Light-harvesting function of β-carotene inside carbon nanotubes. Phys. Rev. B 74, 155420 (2006).CrossRefGoogle Scholar
Otobe, T., Yamagiwa, M., Iwata, J-I., Yabana, K., and Nakatsukasa, T.: First-principles electron dynamics simulation for optical breakdown of dielectrics under an intense laser field. Phys. Rev. B 77, 165104 (2008).CrossRefGoogle Scholar
Castro, A., Marques, M.A.L., Alonso, J.A., Bertsch, G.F., and Rubio, A.: Excited states dynamics in time-dependent density functional theory. Eur. Phys. J. D 28, 211 (2004).CrossRefGoogle Scholar
Sugino, O. and Miyamoto, Y.: Density-functional approach to electron dynamics: Stable simulation under a self-consistent field. Phys. Rev. B: Condens. Matter B59, 2579 (1999).CrossRefGoogle Scholar
Suzuki, M.: General nonsymmetric higher-order decomposition of exponential operators and symplectic integrators. J. Phys. Soc. Jpn. 61, L3015 (1992).CrossRefGoogle Scholar
Miyamoto, Y. and Zhang, H.: Testing the numerical stability of time-dependent density functional simulations using the Suzuki-Trotter formula. Phys. Rev. B 77, 165123 (2008).CrossRefGoogle Scholar
Miyamoto, Y. and Zhang, H.: Laser fluence on materials obtained under the periodic boundary conditions. Mater. Express 2, 71 (2012).CrossRefGoogle Scholar
Troullier, N. and Martins, J.L.: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993 (1991).CrossRefGoogle ScholarPubMed
Perdew, J.P. and Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048 (1981).CrossRefGoogle Scholar
Ceperley, D.M. and Aldar, B.J.: Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566 (1980).CrossRefGoogle Scholar
Tully, J.C.: Molecular dynamics with electronic transitions. J. Chem. Phys. 93, 1061 (1990).CrossRefGoogle Scholar
Real-time dynamics, in Fundamentals of Time-Dependent Density Functional Theory, Lecture Note of Physics, Vol. 837, edited by Marques, M.A.L., Maitra, N.T., Nogueira, F.M.S., Gross, E.K.U., and Rubio, A. (Springer, Heidelberg, Germany, 2012).CrossRefGoogle Scholar
Hamada, N., Sawada, S., and Oshiyama, A.: New one-dimensional conductors: Graphitic microtubules. Phys. Rev. Lett. 68, 1579 (1992).CrossRefGoogle ScholarPubMed
Saito, R., Fujita, M., Dresselhaus, G., and Dresselhaus, M.S.: Electronic structure of graphene tubules based on C60. Phys. Rev. B 46, 1804 (1992).CrossRefGoogle ScholarPubMed
Ajiki, H. and Ando, T.: Aharonov-Bohm effect in carbon nanotubes. Physica B 201, 349 (1994).CrossRefGoogle Scholar
Lefebvre, K. and Finnie, P.: Polarized photoluminescence excitation spectroscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 98, 167406 (2007).CrossRefGoogle ScholarPubMed
Zhang, H. and Miyamoto, Y.: Modulation of alternating electric field inside photoexcited carbon nanotubes. Appl. Phys. Lett. 95, 053109 (2009).CrossRefGoogle Scholar
Adachi, M., Yamane, K., Morita, R., and Yamashita, M.: Sub-5-fs pulse compression of laser output using photonic crystal fiber with short zero-dispersion wavelength. Jpn. J. Appl. Phys. 44, L1423 (2005).CrossRefGoogle Scholar
Miyamoto, Y., Zhang, H., and Rubio, A.: First-principles simulations of chemical reactions in an HCl molecule embedded inside a C or BN nanotube induced by ultrafast laser pulses. Phys. Rev. Lett. 105, 248301 (2010).CrossRefGoogle ScholarPubMed
Miyamoto, Y., Zhang, H., and Rubio, A.: Pulse-induced nonequilibrium dynamics of acetylene inside carbon nanotube studied by an ab initio approach. Proc. Natl. Acad. Sci. U.S.A. 109, 8861 (2012).CrossRefGoogle ScholarPubMed
Hertel, T. and Moos, G.: Electron-phonon interaction in single-wall carbon nanotubes: A time-domain study. Phys. Rev. Lett. 84, 5002 (2000).CrossRefGoogle ScholarPubMed
Jeschke, H.O., Garcia, M.E., and Bennemann, K.H.: Theory for the ultrafast ablation of graphite films. Phys. Rev. Lett. 87, 015003 (2001).CrossRefGoogle ScholarPubMed