Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T11:47:59.013Z Has data issue: false hasContentIssue false

Simulation of hydrogen storage in porous carbons

Published online by Cambridge University Press:  27 November 2012

Julio Alfonso Alonso*
Affiliation:
Departamento de Física Teórica, Atómica y Óptica, Facultad de Ciencias, Universidad de Valladolid, E-47011 Valladolid, Spain
Iván Cabria
Affiliation:
Departamento de Física Teórica, Atómica y Óptica, Facultad de Ciencias, Universidad de Valladolid, E-47011 Valladolid, Spain
María José López
Affiliation:
Departamento de Física Teórica, Atómica y Óptica, Facultad de Ciencias, Universidad de Valladolid, E-47011 Valladolid, Spain
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Storage is the main problem to use hydrogen as a fuel in the car industry. Porous carbons are promising storage materials. We have performed computer simulations to investigate carbide-derived porous carbons, showing that these materials exhibit a structure of connected pores with graphitic walls. We then apply a thermodynamic model to evaluate the hydrogen storage. The model accounts for the quantum effects of the motion of the molecules in the pores. The pore widths optimizing the storage depend on pore shape, temperature, and pressure. At 300 K and 10 MPa, the optimal widths lie in the range 6–10 Å. The predictions are consistent with experiment. The calculated storage capacities fall below the targets proposed by the U.S. Department of Energy. This is a consequence of the weak interaction between hydrogen and the pore walls. Metallic doping enhances the binding energy of hydrogen to the walls, which has promising consequences for hydrogen storage.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ogden, J.M.: Hydrogen: The fuel of the future? Phys. Today 55(4), 69 (2002).CrossRefGoogle Scholar
Fuel Cell Handbook, 7th ed. (EG&G Services, Inc., US DOE, Morgantown, WV, 2004).Google Scholar
Targets for Onboard Hydrogen Storage Systems for Light-duty Vehicles (US DOE, 2009). http://www.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_storage_explanation.pdf.Google Scholar
Cabria, I.. López, M.J., and Alonso, J.A.: Hydrogen storage in nanoporous carbon, in Handbook of Nanophysics: Functional Materials, Vol. 5, edited by Sattler, K. (CRC Press, Boca Raton, FL, 2010); p. 41.1.Google Scholar
Wong-Foy, A.G., Matzger, A.J., and Yaghi, O.M.: Exceptional H2 saturation uptake in microporous metal-organic frameworks. J. Am. Chem. Soc. 128, 3494 (2006).CrossRefGoogle ScholarPubMed
Langmi, H.W., Walton, A., Al-Mamouri, M.M., Johnson, S.R., Book, D., Speight, J.D., Edwards, P.P., Gameson, I., Anderson, P.A., and Harris, I.R.: Hydrogen adsorption in zeolites A, X, Y, and RHO. J. Alloys Compd. 356, 710 (2003).CrossRefGoogle Scholar
Mao, W.L., Mao, H.K, Goncharov, A.F., Struzhkin, V.V., Guo, Q., Hu, J., Shu, J., Hemley, R.J., Somayazulu, M., and Zhao, Y.: Hydrogen clusters in clathrate hydrate. Science 297, 2247 (2002).CrossRefGoogle ScholarPubMed
McKeown, N.B., Budd, P.M., and Book, D.: Microporous polymers as potential hydrogen storage materials. Macromol. Rapid Commun. 28, 995 (2007).CrossRefGoogle Scholar
Li, J., Furuta, T., Goto, H., Ohashi, T., Fujiwara, Y., and Yip, S.: Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures. J. Chem. Phys. 119, 2376 (2003).CrossRefGoogle Scholar
Bhatia, S.K. and Myers, A.L.: Optimum conditions for adsorptive storage. Langmuir 22, 1688 (2006).CrossRefGoogle ScholarPubMed
Linares-Solano, A., Jordá-Beneyto, M., Kunowsky, M., Suárez-García, F., and Cazorla-Amorós, D.: Hydrogen storage in carbon materials, in Carbon Materials: Theory and Practice, edited by Terzyk, P., Gauden, P.A., and Kowalczyk, P. (Research Signpost, Trivandrum, India, 2008); p. 245.Google Scholar
Dash, R.K., Yushin, G., and Gogotsi, Y.: Synthesis, structure and porosity analysis of microporous and mesoporous carbon derived from zirconium carbide. Microporous Mesoporous Mater. 86, 50 (2005).CrossRefGoogle Scholar
Lenosky, T., Gonze, X., Teter, M., and Elser, V.: Energetics of negatively curved graphitic carbon. Nature 355, 333 (1992).CrossRefGoogle Scholar
Barborini, E., Piseri, P., Milani, P., Benedek, G., Ducati, C., and Robertson, J.: Negatively curved spongy carbon. Appl. Phys. Lett. 81, 3359 (2002).CrossRefGoogle Scholar
Benedek, G., Vahedi-Tafreshi, H., Baroni, E., Piseri, P., Milani, P., Ducati, C., and Robertson, J.: The structure of negatively curved spongy carbon. Diamond Relat. Mater. 12, 768 (2003).CrossRefGoogle Scholar
Dresselhaus, M.S., Dresselhaus, G., and Avouris, P.: Carbon Nanotubes. Synthesis, Structure, Properties, and Applications, Topics in Applied Physics, Vol. 80 (Springer Verlag, Berlin, 2001).Google Scholar
Iijima, S., Yudasaka, M., Yamada, R., Bandow, S., Suenaga, K., Kokai, F., and Takahashi, K.: Nano-aggregates of single-walled graphitic carbon nano-horns. Chem. Phys. Lett. 309, 165 (1999).CrossRefGoogle Scholar
Gogotsi, Y., Nikitin, A., Ye, H., Zhou, W., Fischer, J.E., Yi, B., Foley, H.C., and Barsoum, M.W.: Nanoporous carbide-derived carbon with tunable pore size. Nat. Mater. 2, 591 (2003).CrossRefGoogle ScholarPubMed
Yushin, G., Dash, R., Jagiello, J., and Gogotsi, Y., Carbide-derived carbons: Effect of pore size on hydrogen uptake and heat of adsorption. Adv. Funct. Mater. 16, 2288 (2006).CrossRefGoogle Scholar
Peng, L. and Morris, J.R.: Prediction of hydrogen adsorption properties in expanded graphite model and in nanoporous carbon. J. Phys. Chem. C 114, 15522 (2010).CrossRefGoogle Scholar
López, M.J., Cabria, I., and Alonso, J.A.: Simulated porosity and electronic structure of nanoporous carbons. J. Chem. Phys. 135, 104706 (2011).CrossRefGoogle ScholarPubMed
Tersoff, J.: Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys. Rev. Lett. 61, 2879 (1988).CrossRefGoogle ScholarPubMed
Konnert, J.H. and Dantonio, P.: Diffraction evidence for distorted graphite-like ribbons in an activated carbon of very large surface area. Carbon 21, 193 (1983).CrossRefGoogle Scholar
Kaneko, K., Ishii, C., Ruike, M., and Kuwabara, H.: Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons. Carbon 30, 1075 (1992).CrossRefGoogle Scholar
Nordlund, K., Keinonen, J., and Mattila, T.: Formation of ion irradiation induced small-scale defects on graphite surfaces. Phys. Rev. Lett. 77, 699 (1996).CrossRefGoogle ScholarPubMed
Gogotsi, Y., Dash, R.K., Yushin, G., Yildirim, T., Laudisio, G., and Fischer, J.E.: Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. J. Am. Chem. Soc. 127, 16006 (2005).CrossRefGoogle ScholarPubMed
Fujita, M., Wakabayashi, K., Nakada, K., and Kusakabe, K.: Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn. 65, 1920 (1996).CrossRefGoogle Scholar
Son, Y.W., Cohen, M.L., and Louie, S.G.: Half-metallic graphene nanoribbons. Nature 444, 347 (2006).CrossRefGoogle ScholarPubMed
Hod, O., Peralta, J.E., and Scuseria, G.E.: Edge effects in finite elongated graphene nanoribbons. Phys. Rev. B 76, 233401 (2007).CrossRefGoogle Scholar
Wang, C.Z., Qiu, S.Y., and Ho, K.M.: O(N) tight-binding molecular dynamics study of amorphous carbon. Comput. Mater. Sci. 7, 315 (1997).CrossRefGoogle Scholar
Peng, L.J. and Morris, J.R.: Structure and hydrogen adsorption properties of low density nanoporous carbons from simulations. Carbon 50, 1394 (2012).CrossRefGoogle Scholar
Suarez-Martinez, I. and Marks, N.A.: Effect of microstructure on the thermal conductivity of disordered carbon. Appl. Phys. Lett. 99, 033101 (2011).CrossRefGoogle Scholar
Marks, N.A.: Generalizing the environment-dependent interaction potential for carbon. Phys. Rev. B 63, 035401 (2001).CrossRefGoogle Scholar
Ferrari, A.C., Libassi, A., Tanner, B.K., Stolojan, V., Yuan, J., Brown, L.M., Rodil, S.E., Kleinsorge, B., and Robertson, J.: Density, sp3 fraction, and cross-sectional structure of amorphous carbon films determined by x-ray reflectivity and electron energy-loss spectroscopy. Phys. Rev. B 62, 11089 (2000).CrossRefGoogle Scholar
Thomson, K.T. and Gubbins, K.E.: Modeling structural morphology of microporous carbons by reverse Monte Carlo. Langmuir 16, 5761 (2000).CrossRefGoogle Scholar
Opletal, G., Petersen, T.C., McCulloch, D.G., Snook, I.K., and Yarovsky, I.: The structure of disordered carbon solids studied using a hybrid reverse Monte Carlo algorithm. J. Phys. Condens. Matter 17, 2605 (2005).CrossRefGoogle Scholar
Zetterström, P., Urbonaite, S., Lindberg, F., Delaplane, R.G., Leis, J., and Svensson, G.: Reverse Monte Carlo studies of nanoporous carbon from TiC. J. Phys. Condens. Matter 17, 3509 (2005).CrossRefGoogle Scholar
McGreevy, R.L. and Putszai, L.: Reverse Monte Carlo simulation: A new technique for the determination of disordered structures. Mol. Simul. 1, 359 (1988).CrossRefGoogle Scholar
Schroeder, D.V.: An Introduction to Thermal Physics (Addison-Wesley, Reading, MA, 2000).Google Scholar
Arellano, J.S., Molina, L.M., Rubio, A., and Alonso, J.A.: Density functional study of adsorption of molecular hydrogen on graphene layers. J. Chem. Phys. 112, 8114 (2000).CrossRefGoogle Scholar
Okamoto, Y. and Miyamoto, Y.: Ab initio investigation of physisorption of molecular hydrogen on planar and curved graphenes. J. Phys. Chem. B 105, 3470 (2001).CrossRefGoogle Scholar
Cabria, I., López, M.J., and Alonso, J.A.: Interaction of molecular and atomic hydrogen with (5, 5) and (6, 6) single-wall carbon nanotubes. J. Chem. Phys. 123, 204721 (2005).CrossRefGoogle Scholar
Kohn, W. and Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
Parr, R.G. and Yang, W.: Density functional theory of atoms and molecules (Oxford University Press, Oxford, 1989).Google Scholar
Ferre-Vilaplana, A.: Numerical treatment discussion and ab initio computational reinvestigation of physisorption of molecular hydrogen on graphene. J. Chem. Phys. 122, 104709 (2005).CrossRefGoogle ScholarPubMed
Mattera, L., Rosatelli, F., Salvo, C., Tommasini, F., Valbusa, U., and Vidali, G.: Selective adsorption of 1H2 and 2H2 on the (0001) graphite surface. Surf. Sci. 93, 515 (1980).CrossRefGoogle Scholar
Cabria, I., López, M.J., and Alonso, J.A.: The optimum average nanopore size for hydrogen storage in carbon nanoporous materials. Carbon 45, 2649 (2007).CrossRefGoogle Scholar
Cabria, I., López, M.J., and Alonso, J.A.: Simulation of the hydrogen storage in nanoporous carbons with different pore shapes. Int. J. Hydrogen Energy 36, 10748 (2011).CrossRefGoogle Scholar
Alonso, J.A. and Mañanes, A.: Long-range van der Waals interactions in density functional theory. Theor. Chem. Acc. 117, 467 (2007).CrossRefGoogle Scholar
Carrete, J., Longo, R.C., Gallego, L.J., Vega, A., and Balbás, L.C.: Al enhances the H2 storage capacity of graphene at nanoribbon borders but not at central sites: A study using nonlocal van der Waals density functionals. Phys. Rev. B 85, 125435 (2012).CrossRefGoogle Scholar
Dion, M., Rydberg, H., Schröder, E., Langreth, D.C., and Lundqvist, B.I.: Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).CrossRefGoogle Scholar
Klimes, J., Bowler, D.R., and Michaelides, A.: Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 22, 022201 (2010).CrossRefGoogle ScholarPubMed
Arellano, J.S., Molina, L.M., Rubio, A., López, M.J., and Alonso, J.A.: Interaction of molecular and atomic hydrogen with (5, 5) and (6, 6) single-wall carbon nanotubes. J. Chem. Phys. 117, 2281 (2002).CrossRefGoogle Scholar
Cabria, I., López, M.J., and Alonso, J.A.: Density functional study of molecular hydrogen coverage on carbon nanotubes. Comput. Mater. Sci. 35, 238 (2006).CrossRefGoogle Scholar
Brown, C.M., Yildirim, T., Newmann, D.A., Heben, M.J., Gennett, T., Dillon, A.C., Alleman, J.L., and Fischer, J.E.: Quantum rotation of hydrogen in single-wall carbon nanotubes. Chem. Phys. Lett. 329, 311 (2000).CrossRefGoogle Scholar
Züttel, A.: Materials for hydrogen storage. Mater. Today 6, 24 (2003).CrossRefGoogle Scholar
Jorda–Beneyto, M., Suarez–García, F., Lozano–Castelló, D., Cazorla–Amorós, D., and Linares-Solano, A.: Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon 45, 293 (2007).CrossRefGoogle Scholar
Cabria, I., López, M.J., and Alonso, J.A.: Hydrogen storage in pure and Li-doped carbon nanopores: Combined effects of concavity and doping. J. Chem. Phys. 128, 144704 (2008).CrossRefGoogle ScholarPubMed
Patchkovskii, S., Tse, J.S., Yurchenko, S.N., Zhechkov, L., Heine, T., and Seifert, G.: Graphene nanostructures as tunable storage media for molecular hydrogen. Proc. Nat. Acad. Sci. U.S.A. 102,10439 (2005).CrossRefGoogle ScholarPubMed
Tarazona, P., Marconi, U.M.B., and Evans, R.: Phase equilibria of fluid interfaces and confined fluids. Non-local versus local density functionals. Mol. Phys. 60, 573 (1987).CrossRefGoogle Scholar
Jagiello, J. and Olivier, J.P.: A simple two-dimensional NLDFT model of gas adsorption in finite carbon pores. Application to pore structure analysis. J. Phys. Chem. C 113, 19382 (2009).CrossRefGoogle Scholar
Mills, R.L., Liebenberg, D.H., Bronson, J.C., and Schmidt, L.C.: Equation of state of fluid n-H2 from P-V-T and sound velocity measurements to 20 kbar. J. Chem. Phys. 66, 3076 (1977).CrossRefGoogle Scholar
Younglove, B.A.: Thermophysical properties of fluids. I. Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride and oxygen. J. Phys. Chem. Ref. Data 11, 1 (1982).Google Scholar
Rzepka, M., Lamp, P., and de la Casa-Lillo, M.A.: Physisorption of hydrogen on microporous carbon and carbon nanotubes. J. Phys. Chem. B 102, 10894 (1998).CrossRefGoogle Scholar
de la Casa-Lillo, M.A., Lamari-Darkrim, F., Cazorla-Amorós, D., and Linares-Solano, A.: Hydrogen storage in activated carbons and activated carbon fibers. J. Phys. Chem. B 106, 10930 (2002).CrossRefGoogle Scholar
Martínez-Mesa, A., Yurchenko, S.N., Patchkovskii, S., Heine, T., and Seifert, G.: Influence of quantum effects on the physisorption of molecular hydrogen in model carbon foams. J. Chem. Phys. 135, 214701 (2011).CrossRefGoogle ScholarPubMed
McCoy, D., Rick, S.W., and Haymet, A.D.J.: Density functional theory of freezing for quantum systems. I. Path integral formulation of general theory. J. Chem. Phys. 92, 3034 (1990).CrossRefGoogle Scholar
Rick, S.W., McCoy, J.D., and Haymet, A.D.J.: Density functional theory of freezing for quantum systems. II. Application to helium. J. Chem. Phys. 92, 3040 (1990).CrossRefGoogle Scholar
Gallego, N.C., He, L., Saha, D., Contescu, C.I., and Melnichenko, Y.B.: Hydrogen confinement in carbon nanopores: Extreme densification at ambient temperature. J. Am. Chem. Soc. 133, 13794 (2011).CrossRefGoogle ScholarPubMed
Bores, C., Cabria, I., Alonso, J.A., and López, M.J.: Adsorption and dissociation of molecular hydrogen on the edges of graphene nanoribbons. J. Nanopart. Res. (2012, in press).CrossRefGoogle Scholar
Kiran, B., Kandalam, A.K., and Jena, P.: Hydrogen storage and the 18-electron rule. J. Chem. Phys. 124, 224703 (2006).CrossRefGoogle ScholarPubMed
Durgun, E., Jang, Y.R., and Ciraci, S.: Hydrogen storage capacity of Ti-doped boron-nitride and B/Be-substituted carbon nanotubes. Phys Rev. B 76, 073413 (2007).CrossRefGoogle Scholar
Zhao, Y., Kim, Y.H., Dillon, A.C., Heben, M.J., and Zhang, S.B.: Hydrogen storage in novel organometallic buckyballs. Phys. Rev. Lett. 94, 155504 (2005).CrossRefGoogle ScholarPubMed
Yildirim, T. and Ciraci, S.: Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. Phys. Rev. Lett. 94, 175501 (2005).CrossRefGoogle ScholarPubMed
Chen, P., Wu, X., Lin, J., and Tan, K.L.: High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285, 91 (1999).CrossRefGoogle ScholarPubMed
Yang, R.T.: Hydrogen storage by alkali-doped carbon nanotubes–revisited. Carbon 38, 623 (2000).CrossRefGoogle Scholar
Bath, V.V., Contescu, C.I., Gallego, N.C., and Baker, F.S.: Atypical hydrogen uptake on chemically-activated, ultramicroporous carbon. Carbon 48, 1331 (2010).Google Scholar
Khantha, M., Cordero, N.A., Molina, L.M., Alonso, J.A., and Girifalco, L.A.: Interaction of lithium with graphene: An ab initio study. Phys. Rev. B 70, 125422 (2004).CrossRefGoogle Scholar
Zhu, Z.H. and Lu, G.Q.: Comparative study of Li, Na, and K adsorptions on graphite by using ab initio method. Langmuir 20, 10751 (2004).CrossRefGoogle Scholar
Chan, K.T., Neaton, J.B., and Cohen, M.L.: First-principles study of metal adatom adsorption on graphene. Phys. Rev. B 77, 235430 (2008).CrossRefGoogle Scholar
Cho, J.H. and Park, C.R.: Hydrogen storage on Li-doped single-walled carbon nanotubes: Computer simulation using the density functional theory. Catal. Today 120, 407 (2007).CrossRefGoogle Scholar
Sun, Q., Jena, P., Wang, Q., and Marquez, M.: First-principles study of hydrogen storage on Li12C60. J. Am. Chem. Soc. 128, 9741 (2006).CrossRefGoogle ScholarPubMed
Froudakis, G.E.: Why alkali-metal-doped carbon nanotubes possess high hydrogen uptake. Nano Lett. 1, 531 (2001).CrossRefGoogle Scholar
Yoon, M., Yang, S., Hicke, C., Wang, E., Geohegan, D., and Zhang, Z.: Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage. Phys. Rev. Lett. 100, 206806 (2008).CrossRefGoogle ScholarPubMed
Lee, H., Ihm, J., Cohen, M.L., and Louie, S.G.: Calcium-decorated graphene-based nanostructures for hydrogen storage. Nano Lett. 10, 793 (2010).CrossRefGoogle ScholarPubMed
Sun, Q., Wang, Q., Jena, P., and Kawazoe, Y.: Clustering of Ti on a C60 surface and its effect on hydrogen storage. J. Am. Chem. Soc. 127, 14582 (2005).CrossRefGoogle ScholarPubMed
Dag, S., Ozturk, Y., Ciraci, S., and Yildirim, T.: Adsorption and dissociation of hydrogen molecules on bare and functionalized carbon nanotubes. Phys. Rev. B 72, 155404 (2005).CrossRefGoogle Scholar
Yildirim, T., Iñiguez, J., and Ciraci, S.: Molecular and dissociative adsorption of multiple hydrogen molecules on transition metal decorated C60. Phys. Rev. B 72, 153403 (2005).CrossRefGoogle Scholar
Contescu, C.I., van Benthem, K., Li, S., Bonifacio, C.S., Pennycook, S.J., Jena, P., and Gallego, N.C.: Single Pd atoms in activated carbon fibers and their contribution to hydrogen storage. Carbon 49, 4050 (2011).CrossRefGoogle Scholar
Cabria, I., López, M.J., and Alonso, J.A.: Theoretical study of the transition from planar to three-dimensional structures of palladium clusters supported on graphene. Phys. Rev. B 81, 035403 (2010).CrossRefGoogle Scholar
Krasnov, P.O., Ding, F., Singh, A.K., and Yakobson, B.I.: Clustering of Sc on SWNT and reduction of hydrogen uptake: Ab-initio all-electron calculations. J. Phys. Chem. C 111, 17977 (2007).CrossRefGoogle Scholar
Krasheninnikov, A.V., Lehtinen, P.O., Foster, A.S., Pyykkö, P., and Nieminen, R.M.: Embedding transition-metal atoms in graphene: Structure, bonding, and magnetism. Phys. Rev. Lett. 102, 126807 (2009).CrossRefGoogle ScholarPubMed
Sigal, A., Rojas, M.I., and Leiva, E.P.M.: Is hydrogen storage possible in metal-doped graphite 2D systems in conditions found on earth? Phys. Rev. Lett. 107, 158701 (2011).CrossRefGoogle ScholarPubMed
Lueking, A.D. and Yang, R.T.: Hydrogen spillover to enhance hydrogen storage—study of the effect of carbon physicochemical properties. Appl. Catal. A 265, 259 (2004).CrossRefGoogle Scholar
Zacharia, R., Kim, K.Y., Kibria, A.K.M.F., and Nahm, K.S.: Enhancement of hydrogen storage capacity of carbon nanotubes via spill-over from vanadium and palladium nanoparticles. Chem. Phys. Lett. 412, 369 (2005).CrossRefGoogle Scholar
Kim, B.J., Lee, Y.S., and Park, S.J.: Preparation of platinum-decorated porous graphite nanofibers, and their hydrogen storage behaviors. J. Colloid Interface Sci. 318, 530 (2008).CrossRefGoogle ScholarPubMed
Lachawiec, A.J., Qi, G., and Yang, R.T.: Hydrogen storage in nanostructured carbons by spillover: Bridge-building enhancement. Langmuir 21, 11418 (2005).CrossRefGoogle ScholarPubMed
Conner, W.C. and Falconer, J.L.: Spillover in heterogeneous catalysis. Chem. Rev. 95, 759 (1995).CrossRefGoogle Scholar
Singh, A.K., Ribas, M.A., and Yakobson, B.I.: H-spillover through the catalyst saturation: An ab initio thermodynamics study. ACS Nano 3, 1657 (2009).CrossRefGoogle ScholarPubMed