Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T04:56:00.172Z Has data issue: false hasContentIssue false

A simple technique for measuring the adhesion of brittle films to ductile substrates with application to diamond-coated titanium

Published online by Cambridge University Press:  31 January 2011

Joost J. Vlassak
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
M. D. Drory
Affiliation:
Crystallume, Santa Clara, California 95054
W. D. Nix
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
Get access

Abstract

We have developed a new technique for measuring the adhesion of brittle films to ductile substrates. In this technique, a wedge indenter is driven through the brittle coating and into the underlying substrate. Plastic deformation of the substrate causes the coating to delaminate from the substrate. The width of the delaminated area can be directly related to the interface toughness. We present a simple analysis of this technique and apply it to diamond-coated titanium. The toughness of the diamond-titanium interface as measured with this wedge delamination technique is approximately 51 ± 11 J/m2. XPS measurements reveal that a reaction layer of titanium carbide forms between the diamond coating and the titanium substrate. Delamination of the coating occurs by crack propagation in this reaction layer and in the diamond film itself. These observations agree well with nanoindentation measurements performed in the delaminated area of the substrate.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Allen, M. G. and Senturia, S. D., J. Adhesion 25, 303 (1988).CrossRefGoogle Scholar
2.Allen, M. G. and Senturia, S. D., J. Adhesion 29, 219 (1989).CrossRefGoogle Scholar
3.Chu, Y. Z. and Durning, C. J., J. Appl. Polym. Sci. 47, 11511164 (1992).CrossRefGoogle Scholar
4.Bagchi, A., Lucas, G. E., Suo, Z., and Evans, A. G., J. Mater. Res. 9, 17341741 (1994).CrossRefGoogle Scholar
5.Shaffer, E. O. II, McGarry, F. J., and Trusell, F., in Thin Films: Stresses and Mechanical Properties IV, edited by Townsend, P. H., Weihs, T. P., Sanchez, J. E., Jr., and Børgesen, P. (Mater. Res. Soc. Symp. Proc. 308, Pittsburgh, PA, 1993), pp. 535539.Google Scholar
6.Shaffer, E. O. II, Sikorski, S. A., and McGarry, F. J., in Materials Reliability in Microelectronics IV, edited by Børgesen, P., Coburn, J. C., Sanchez, J. E., Jr., Rodbell, K. P., and Filter, W. F. (Mater. Res. Soc. Symp. Proc. 338, Pittsburgh, PA, 1994), pp. 541551.Google Scholar
7.Evans, A. G. and Hutchinson, J. W., Int. J. Solids Structures 20, 455466 (1984).CrossRefGoogle Scholar
8.Marshall, D. B. and Evans, A. G., J. Appl. Phys. 56, 26322638 (1984).CrossRefGoogle Scholar
9.Rossington, C., Evans, A. G., Marshall, D. B., and Khuri-Yakub, B. T., J. Appl. Phys. 56, 26392644 (1984).CrossRefGoogle Scholar
10.Drory, M. D. and Hutchinson, J. W., Science 263, 1753 (1994).CrossRefGoogle Scholar
11.Drory, M. D. and Hutchinson, J. W., Proc. Roy. Soc. 452, 2319 (1996).Google Scholar
12.Johnson, K. L., J. Mech. Phys. Solids 18, 115 (1970).CrossRefGoogle Scholar
13.Mulhearn, T. O., J. Mech. Phys. Solids 7, 85 (1959).CrossRefGoogle Scholar
14.Hirst, W. and Howse, M. G. J. W., Proc. Roy. Soc. A 311, 429444 (1968).Google Scholar
15.Timoshenko, S. P. and Goodier, J. N., Theory of Elasticity (McGraw-Hill, Inc., New York, 1987).Google Scholar
16.Hill, R., The Mathematical Theory of Plasticity, Oxford Engineering Science (Oxford University Press, Oxford, 1950).Google Scholar
17.Johnson, K. L., Contact Mechanics (Cambridge University Press, Cambridge, 1985).CrossRefGoogle Scholar
18.Tabor, D., Hardness of Solids (Oxford University Press, Oxford, 1951).Google Scholar
19.Ager, J. W., Conti, G., and Drory, M. D., unpublished research.Google Scholar
20.Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601609 (1986).CrossRefGoogle Scholar
21.Doerner, M. F., Mechanical properties of metallic thin films on substrates using sub-micron indentation methods and thin film stress measurements techniques, Ph.D. Thesis, Stanford University (1987).Google Scholar
22.Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 15641583 (1992).CrossRefGoogle Scholar
23.Dieter, G. E., Mechanical Metallurgy (McGraw-Hill, New York, 1986).Google Scholar
24.Perry, S. S., Ager, J. W., Somorjai, G. A., McClelland, R. J., and Drory, M. D., J. Appl. Phys. 74, 7542 (1993).CrossRefGoogle Scholar
25.Ramqvist, L., Hamrin, K., Johansson, G., Fahlman, A., and Nordiling, C., J. Phys. Chem. Solids 30, 1835 (1969).CrossRefGoogle Scholar
26.Ihara, H., Kumashiro, Y., Itoh, A., and Maeda, K., Jpn. J. Appl. Phys. 12, 1462 (1973).CrossRefGoogle Scholar
27.Handbook of X-ray Photoelectron Spectroscopy, edited by Moulder, J. F., Stickle, W. F., Sobol, P. E., and Bomben, K. D. (Perkin-Elmer, Eden Prairie, MN, 1992).Google Scholar
28.Drory, M. D., NIST Spec. Publ. 885, pp. 313320 (1995).Google Scholar