Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-29T20:16:44.130Z Has data issue: false hasContentIssue false

A simple low-cost synthesis of brookite TiO2 nanoparticles

Published online by Cambridge University Press:  22 November 2012

Todd C. Monson*
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Mark A. Rodriguez
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Jean L. Leger
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Tyler E. Stevens
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Dale L. Huber
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A new low-cost synthesis of brookite TiO2nanoparticles using isopropanol as both the solvent and ligand is described here. Other ligands can be bound to the titania surface during or postsynthesis to tailor the particles’ functionality. The often extremely rapid hydrolysis of titanium isopropoxide has been successfully controlled so that nanoparticle growth is achieved. The resulting 4-nm particles are nonagglomerated, stable in solution, and have a low polydispersity. The synthesis is scalable and enables the simple fabrication of large amounts of titania nanoparticles that do not scatter visible light and are highly suited for incorporation into optical composites.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arango, A.C., Carter, S.A., and Brock, P.J.: Charge transfer in photovoltaics consisting of interpenetrating networks of conjugated polymer and TiO2 nanoparticles. Appl. Phys. Lett. 74, 1698 (1999).Google Scholar
Gratzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001).Google Scholar
Stark, W.J., Wegner, K., Pratsinis, S.E., and Baiker, A.: Flame aerosol synthesis of vanadia-titania nanoparticles: Structural and catalytic properties in the selective catalytic reduction of NO by NH3. J. Catal. 197, 182 (2001).Google Scholar
Yu, J.C., Yu, J.G., Ho, W.K., and Zhang, L.Z.: Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation. Chem. Commun. 19, 1942 (2001).Google Scholar
Martin, S.T., Herrmann, H., Choi, W.Y., and Hoffmann, M.R.: Time-resolved microwave conductivity. 1. TiO2 photoreactivity and size quantization. J. Chem. Soc., Faraday Trans. 90, 3315 (1994).CrossRefGoogle Scholar
Choi, W.Y., Termin, A., and Hoffmann, M.R.: The role of metal-ion dopants in quantum-sized TiO2 - correlation between photoreactivity and charge-carrier recombination dynamics. J. Phys. Chem. 98, 13669 (1994).CrossRefGoogle Scholar
Anpo, M., Shima, T., Kodama, S., and Kubokawa, Y.: Photocatalytic hydrogenation of CH3CCH with H2O on small-particle TiO2: Size quantization effects and reaction intermediates. J. Phys. Chem. 91, 4305 (1987).Google Scholar
Feldmann, C. and Jungk, H.O.: Polyol-vermittelte präparation nanoskaliger oxidpartikel. Angew. Chem. 113, 372 (2001).3.0.CO;2-J>CrossRefGoogle Scholar
Yu, K.F., Zhao, J.Z., Guo, Y.P., Ding, X.F., Bala, H., Liu, Y.H., and Wang, Z.C.: Sol-gel synthesis and hydrothermal processing of anatase nanocrystals from titanium n-butoxide. Mater. Lett. 59, 2515 (2005).Google Scholar
Huang, S.Y., Kavan, L., Exnar, I., and Gratzel, M.: Rocking chair lithium battery based on nanocrystalline TiO2 (anatase). J. Electrochem. Soc. 142, L142 (1995).CrossRefGoogle Scholar
Will, G., Rao, J.S.S.N., and Fitzmaurice, D.: Heterosupramolecular optical write-read-erase device. J. Mater. Chem. 9, 2297 (1999).Google Scholar
Sotomayor, J., Will, G., and Fitzmaurice, D.: Photoelectrochromic heterosupramolecular assemblies. J. Mater. Chem. 10, 685 (2000).CrossRefGoogle Scholar
Frindell, K.L., Bartl, M.H., Popitsch, A., and Stucky, G.D.: Sensitized luminescence of trivalent europium by three-dimensionally arranged anatase nanocrystals in mesostructured titania thin films. Angew. Chem. 114, 1001 (2002).Google Scholar
Morrison, P.W., Raghavan, R., Timpone, A.J., Artelt, C.P., and Pratsinis, S.E.: In situ Fourier transform infrared characterization of the effect of electrical fields on the flame synthesis of TiO2 particles. Chem. Mater. 9, 2702 (1997).Google Scholar
Yang, G.X., Zhuang, H.R., and Biswas, P.: Characterization and sinterability of nanophase titania particles processed in flame reactors. Nanostruct. Mater. 7, 675 (1996).CrossRefGoogle Scholar
Seifried, S., Winterer, M., and Hahn, H.: Nanocrystalline titania films and particles by chemical vapor synthesis. Chem. Vap. Deposition 6, 239 (2000).Google Scholar
Aruna, S.T., Tirosh, S., and Zaban, A.: Nanosize rutile titania particle synthesis via a hydrothermal method without mineralizers. J. Mater. Chem. 10, 2388 (2000).CrossRefGoogle Scholar
Cheng, H.M., Ma, J.M., Zhao, Z.G., and Qi, L.M.: Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem. Mater. 7, 663 (1995).Google Scholar
Reddy, K.M., Guin, D., Manorama, S.V., and Reddy, A.R.: Selective synthesis of nanosized TiO2 by hydrothermal route: Characterization, structure property relation, and photochemical application. J. Mater. Res. 19, 2567 (2004).Google Scholar
Reddy, K.M., Manorama, S.V., and Reddy, A.R.: Band gap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 78, 239 (2003).Google Scholar
Wang, C.C. and Ying, J.Y.: Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem. Mater. 11, 3113 (1999).Google Scholar
Lim, K.T., Hwang, H.S., Ryoo, W., and Johnston, K.P.: Synthesis of TiO2 nanoparticles utilizing hydrated reverse micelles in CO2. Langmuir 20, 2466 (2004).CrossRefGoogle Scholar
Spatz, J., Mossmer, S., Moller, M., Kocher, M., Neher, D., and Wegner, G.: Controlled mineralization and assembly of hydrolysis-based nanoparticles in organic solvents combining polymer micelles and microwave techniques. Adv. Mater. 10, 473 (1998).Google Scholar
Niederberger, M., Bartl, M.H., and Stucky, G.D.: Benzyl alcohol and titanium tetrachloride - a versatile reaction system for the nonaqueous and low-temperature preparation of crystalline and luminescent titania nanoparticles. Chem. Mater. 14, 4364 (2002).Google Scholar
Trentler, T.J., Denler, T.E., Bertone, J.F., Agrawal, A., and Colvin, V.L.: Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions. J. Am. Chem. Soc. 121, 1613 (1999).Google Scholar
Vioux, A.: Nonhydrolytic sol-gel routes to oxides. Chem. Mater. 9, 2292 (1997).Google Scholar
Cassaignon, S., Koelsch, M., and Jolivet, J-P.: Selective synthesis of brookite, anatase and rutile nanoparticles: Thermolysis of TiCl4 in aqueous nitric acid. J. Mater. Sci. 42, 6689 (2007).Google Scholar
Kandiel, T.A., Feldhoff, A., Robben, L., Dillert, R., and Bahnemann, D.W.: Tailored titanium dioxide nanomaterials: Anatase nanoparticles and brookite nanorods as highly active photocatalysts. Chem. Mater. 22, 2050 (2010).Google Scholar
Kobayashi, M., Tomita, K., Petrykin, V., Yoshimura, M., and Kakihana, M.: Direct synthesis of brookite-type titanium oxide by hydrothermal method using water-soluble titanium complexes. J. Mater. Sci. 43, 2158 (2008).CrossRefGoogle Scholar
Lin, H., Li, L., Zhao, M., Huang, X., Chen, X., Li, G., and Yu, R.: Synthesis of high-quality brookite TiO2 single-crystalline nanosheets with specific facets exposed: Tuning catalysts from inert to highly reactive. J. Am. Chem. Soc. 134, 8328 (2012).Google Scholar
Morishinia, Y., Kobayashi, M., Petrykin, V., Kakihana, M., and Tomita, K.: Microwave-assisted hydrothermal synthesis of brookite nanoparticles from a water-soluble titanium complex and their photocatalytic activity. J. Ceram. Soc. Jpn. 115, 826 (2007).Google Scholar
Murakami, N., Kamai, T.-a., Tsubota, T., and Ohno, T.: Novel hydrothermal preparation of pure brookite-type titanium(IV) oxide nanocrystal under strong acidic conditions. Catal. Commun. 10, 963 (2009).CrossRefGoogle Scholar
Ohno, Y., Tomita, K., Komatsubara, Y., Taniguchi, T., Katsumata, K-I., Matsushita, N., Kogure, T., and Okada, K.: Pseudo-cube shaped brookite (TiO2) nanocrystals synthesized by an oleate-modified hydrothermal growth method. Cryst. Growth Des. 11, 4831 (2011).Google Scholar
Tang, J., Redl, F., Zhu, Y.M., Siegrist, T., Brus, L.E., and Steigerwald, M.L.: An organometallic synthesis of TiO2 nanoparticles. Nano Lett. 5, 543 (2005).Google Scholar
Qiu, X., Thompson, J.W., and Billinge, S.J.L.: PDFgetX2: A GUI-driven program to obtain the pair distribution function from x-ray powder diffraction data. J. Appl. Crystallogr. 37, 678 (2004).CrossRefGoogle Scholar
Farrow, C.L., Juhas, P., Liu, J.W., Bryndin, D., Božin, E.S., Bloch, J., Proffen, T., and Billinge, S.J.L.: PDFfit2 and PDFgui: Computer programs for studying nanostructure in crystals. J. Phys. Condens. Matter 19, 335219 (2007).CrossRefGoogle ScholarPubMed
Turova, N.Y., Turevskaya, E.P., Kessler, V.G., and Yanovskaya, M.I.: The Chemistry of Metal Alkoxides (Kluwer Academic Publishers, New York, NY, 2002); pp. 107125.Google Scholar
Kotov, N.A., Meldrum, F.C., and Fendler, J.H.: Monoparticulate layers of titanium dioxide nanocrystallites with controllable interparticle distances. J. Phys. Chem. 98, 8827 (1994).Google Scholar
Hague, D.C. and Mayo, M.J.: Controlling crystallinity during processing of nanocrystalline titania. J. Am. Ceram. Soc. 77, 1957 (1994).Google Scholar
Stallings, W.E. and Lamb, H.H.: Synthesis of nanostructured titania powders via hydrolysis of titanium isopropoxide in supercritical carbon dioxide. Langmuir 19, 2989 (2003).Google Scholar
Koelsch, M., Cassaignon, S., Guillemoles, J.F., and Jolivet, J.R.: Comparison of optical and electrochemical properties of anatase and brookite TiO2 synthesized by the sol-gel method. Thin Solid Films 403, 312 (2002).CrossRefGoogle Scholar
Henderson, M.A.: A surface science perspective on photocatalysis. Surf. Sci. Rep. 66, 185 (2011).CrossRefGoogle Scholar