Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T10:55:52.842Z Has data issue: false hasContentIssue false

A simple in situ synthesis of iron oxide magnetic nanoparticles embedded in thermosensitive polymer for DNA capture

Published online by Cambridge University Press:  03 August 2020

Sadia Hossain
Affiliation:
Research Laboratory of Polymer Colloids & Nanomaterials, Department of Chemistry, Faculty of Science, Rajshahi University, Rajshahi6205, Bangladesh
Mahbubor Rahman*
Affiliation:
Research Laboratory of Polymer Colloids & Nanomaterials, Department of Chemistry, Faculty of Science, Rajshahi University, Rajshahi6205, Bangladesh Advance Materials Research Laboratory, Department of Materials Science and Engineering, Clemson University, Clemson, SC29625-0971, USA
Yeasmin Nahar
Affiliation:
Research Laboratory of Polymer Colloids & Nanomaterials, Department of Chemistry, Faculty of Science, Rajshahi University, Rajshahi6205, Bangladesh
Abdur Rahman
Affiliation:
Research Laboratory of Polymer Colloids & Nanomaterials, Department of Chemistry, Faculty of Science, Rajshahi University, Rajshahi6205, Bangladesh
Mostafa Kaiyum Sharafat
Affiliation:
Department of Chemistry, Begum Rokeya University, Rangpur, Bangladesh
Motahar Hossain
Affiliation:
Research Laboratory of Polymer Colloids & Nanomaterials, Department of Chemistry, Faculty of Science, Rajshahi University, Rajshahi6205, Bangladesh
Bungo Ochiai
Affiliation:
Department of Chemistry and Chemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
Abdelhamid Elaissari
Affiliation:
Laboratory of Automatic Control, Chemical and Pharmaceutical Engineering (LAGEP)-Lyon, University of Lyon 1, Villeurbanne Cedex69622, France
Hasan Ahmad
Affiliation:
Research Laboratory of Polymer Colloids & Nanomaterials, Department of Chemistry, Faculty of Science, Rajshahi University, Rajshahi6205, Bangladesh
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this study, we report a simple one-pot synthesis of iron oxide nanoparticles (IONPs) modified with thermoresponsive polymers potentially applicable for nucleic acid capture. Ferrous (Fe2+) and ferric (Fe3+) ions were coprecipitated to a dispersion of previously prepared poly(N-isopropylacrylamide-co-2-aminoethyl methacrylate) P(NIPAAm-co-AEM) for in situ synthesis of magnetite (Fe3O4) and concurrent surface modification of Fe3O4 with the polymer to obtain magnetic nanocomposites. Fourier-transform infrared (FTIR) spectroscopy analysis reveals the surface modification of Fe3O4 with P(NIPAAm-co-AEM) and P(NIPAAm) as functional and control polymers, respectively. Fe3O4@P(NIPAAm-co-AEM) and Fe3O4@P(NIPAAm) nanocomposites’ surfaces contain 7.5 and 2.3 wt% of immobilized polymers, respectively. Vibrating sample magnetometry (VSM) result indicates a high saturation of magnetization value, 75 emu/g, for Fe3O4@P(NIPAAm-co-AEM) nanocomposites. The hydrodynamic diameter of Fe3O4@P(NIPAAm-co-AEM) in water changes depending on pH and temperature. A study for deoxyribonucleic acid (DNA) capture ability of Fe3O4@P(NIPAAm-co-AEM) nanocomposites shows a maximum 18.5 mg/g of DNA can be adsorbed on Fe3O4@P(NIPAAm-co-AEM).

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chomouckaa, J., Drbohlavova, J., Huska, D., Adam, V., Kizek, R., and Hubalek, J.: Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res. 62, 144 (2010).CrossRefGoogle Scholar
Yang, J., Wang, R., and Xie, D.: Precisely controlled incorporation of drug nanoparticles in polymer vesicles by amphiphilic copolymer tethers. Macromolecules 51, 6810 (2018).CrossRefGoogle Scholar
Mou, X., Ali, Z., Li, S., and He, N.: Applications of magnetic nanoparticles in targeted drug delivery system. J. Nanosci. Nanotechnol. 15, 54 (2015).CrossRefGoogle ScholarPubMed
Kayal, S. and Ramanujan, R.V.: Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mat. Sci. Eng. C 30, 484 (2010).CrossRefGoogle Scholar
Nosrati, H., Javani, E., Salehiabar, M., Manjili, H.K., Davaran, S., and Danafar, H.: Biocompatibility and anticancer activity of L-phenyl alanine-coated iron oxide magnetic nanoparticles as potential chrysin delivery system. J. Mater. Res. 33, 1602 (2018).CrossRefGoogle Scholar
Zhao, M., Kircher, M.F., Josephson, L., and Weissleder, R.: Differential conjugation of peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjugate Chem. 13, 840 (2002).CrossRefGoogle ScholarPubMed
Butler, J.P. and Kelly, S.M.: A model for cytoplasmic rheology consistent with magnetic twisting cytometry. Biorheology 35, 193 (1998).CrossRefGoogle Scholar
Hayashi, K., Shimizu, T., Asano, H., Sakamoto, W., and Yogo, T.: Synthesis of spinel iron oxide nanoparticle/organic hybrid for hyperthermia. J. Mater. Res. 23, 3415 (2008).10.1557/JMR.2008.0417CrossRefGoogle Scholar
Bulte, J.W.M., Douglas, T., Witwer, B., Zhang, S.C., Strable, E., Lewis, B.K., Zywicke, H., Miller, B., Gelderen, P.V., Moskowitz, B.M., Duncan, I.D., and Frank, J.A.: Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat. Biotechnol. 19, 1141 (2001).CrossRefGoogle ScholarPubMed
Ling, W., Wang, M., Xiong, C., Xie, D., Chen, Q., Chu, X., Qiu, X., Li, Y., and Kiao, X.: Synthesis, surface modification, and applications of magnetic iron oxide nanoparticles. J. Mater. Res. 34, 1824 (2019).CrossRefGoogle Scholar
Rahman, M.M. and Elaissari, A.: Nucleic acid sample preparation for in vitro molecular diagnosis: From conventional techniques to biotechnology. Drug. Discov. Today 17, 1199 (2012).CrossRefGoogle ScholarPubMed
Arora, W.S.: Superparamagnetic iron oxide nanoparticles: Magnetic nanoplatforms as drug carriers. Int. J. Nanomedicine 7, 3445 (2012).Google Scholar
Rahman, M. M., Giol, E. D., Cama, G., Vlierberghe, S. V., Dubruel, P.: Stimuli-responsive hydrogels for tissue engineering. In Fundamental Principles. RSC Smart Materials Series, Wang, Qun, ed. (2016); p 62. doi:10.1039/9781782626756-00062.CrossRefGoogle Scholar
Yong, Y., Bai, Y., Li, Y., Lin, L., Cui, Y., and Xia, C.: Preparation and application of polymer-grafted magnetic nanoparticles for lipase immobilization. J. Magn. Magn. Mater. 320, 2350 (2008).CrossRefGoogle Scholar
Davaran, S., Akbarzadeh, A., Nejati-Koshki, K., Alimohammadi, S., Ghamari, M.F., Soghrati, M.M., Rezaei, A., and Khandaghi, A.A.: In vitro studies of P(NIPAAm-MAA-VP) copolymer-coated magnetic nanoparticles for controlled anticancer drug release. J. Encap. Adsorp. Sci. 3, 108 (2013).Google Scholar
Rahimi, M., Wadajkar, A., Subramanian, K., Yousef, M., Cui, W., Hsieh, J.T., and Nguyen, K.T.: In vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled drug delivery. Nanomedicine 6, 672 (2010).CrossRefGoogle ScholarPubMed
Tartaj, P., Morales, M.D.P., Veintemillas-Verdaguer, S., González-Carreno, T., and Serna, C.J.: The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 36, R182 (2003).CrossRefGoogle Scholar
Geever, L.M., Devine, D.M., Nugent, M.D.J., Kennedy, J.E., Lyons, J.G., and Higginbotham, C.L.: The synthesis, characterization, phase behaviour and swelling of temperature sensitive physically crosslinked poly(1-vinyl-2-pyrrolidinone)/poly(N-isopropylacrylamide) hydrogels. Eur. Polym. J. 42, 69 (2006).CrossRefGoogle Scholar
Geever, L.M., Devine, D.M., Nugent, M.J.D., Kennedy, J.E., Lyons, J.G., Hanley, A., and Higginbotham, C.L.: Lower critical solution temperature control and swelling behavior of physically crosslinked thermosensitive copolymers based on N-isopropylacrylamide. Eur. Polym. J. 42, 2540 (2006).CrossRefGoogle Scholar
Zhang, J.L., Srivastava, R.S., and Misra, R.D.K.: Core–shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer: Synthesis, characterization, and LCST of viable drug-targeting delivery system. Langmuir 2311, 6342 (2007).CrossRefGoogle Scholar
Akbarzadeh, A., Zarghami, N., Mikaeili, H., Asgari, D., Goganian, A.M., Khiabani, H.K., Samiei, M., and Davaran, S.: Synthesis, characterization, and in vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled delivery of doxorubicin. Nanotechnol. Sci. Appl. 5, 13 (2012).Google ScholarPubMed
Tanjim, M., Rahman, M.A., Rahman, M.M., Minami, H., Hoque, S.M., Sharafat, M.K., Gafur, M.A., and Ahmad, H.: Mesoporous magnetic silica particles modified with stimuli-responsive P(NIPAM–DMA) valve for controlled loading and release of biologically active molecules. Soft Matter 14, 5469 (2018).10.1039/C8SM00560ECrossRefGoogle ScholarPubMed
Rahman, M.M., Nahar, Y., Ullah, W., Elaissari, A., and Ahmad, H.: Incorporation of iron oxide nanoparticles into temperature-responsive poly(N-isopropylacrylamide-co-acrylic acid) P(NIPAAm-AA) polymer hydrogel. J. Polym. Res. 22, 33 (2015).10.1007/s10965-015-0673-yCrossRefGoogle Scholar
Rahman, M.M. and Elaissari, A.: Temperature and magnetic dual responsive microparticles for DNA separation. Sep. Purif. Technol. 81, 286 (2011).CrossRefGoogle Scholar
Yi, D.K., Selvan, S.T., Lee, S.S., Papaefthymiou, G.C., Kundaliya, D., and Ying, J.Y.: Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. J. Am. Chem. Soc. 127, 4990 (2005).CrossRefGoogle ScholarPubMed
Rahman, M.M., Chehimi, M.M., Fessi, H., and Elaissari, A.: Highly temperature responsive core-shell magnetic particles: Synthesis, characterization and colloidal properties. J. Colloid. Inter. Sci. 360, 556 (2011).CrossRefGoogle ScholarPubMed
Majewski, A.P., Schallon, A., Jérôme, V., Freitag, R., Müller, A.H.E., and Schmal, H.: Dual-responsive magnetic core–shell nanoparticles for nonviral gene delivery and cell separation. Biomacromolecules 13, 857 (2012).CrossRefGoogle ScholarPubMed
Nahar, Y., Rahman, M.A., Hossain, M.K., Sharafat, M.K., Karim, M.R., Elaissari, A., Ochiai, B., Ahmad, H., and Rahman, M.M.: A facile one-pot synthesis of poly(acrylic acid)-functionalized magnetic iron oxide nanoparticles for suppressing reactive oxygen species generation and adsorption of biocatalyst. Mater. Res. Express 7, 016102 (2020).CrossRefGoogle Scholar
Zhu, H., Tao, J., Wang, W., Zhou, Y., Li, P., Li, Z., Yan, K., Wu, S., Yeung, K.W.K., Xu, Z., Xu, H., and Chu, P.K.: Magnetic, fluorescent, and thermo-responsive Fe3O4/rare earth incorporated poly(St-NIPAm) core shell colloidal nanoparticles in multimodal optical/magnetic resonance imaging probes. Biomaterials 34, 2296 (2013).10.1016/j.biomaterials.2012.11.056CrossRefGoogle Scholar
Zhou, A., Luo, H., Wang, Q., Chen, L., Zhang, T.C., and Tao, T.: Magnetic thermoresponsive ionic nanogels as novel draw agents in forward osmosis. RSC Adv. 5, 15359 (2015).CrossRefGoogle Scholar
Deng, K.L., Tian, H., Zhang, P.F., Ren, X.B., and Zhong, H.B.: Synthesis and characterization of a novel temperature-pH responsive copolymer of 2-hydroxypropyl acrylate and aminoethyl methacrylate hydrochloric salt. eXPRESS Polym. Lett. 3, 97 (2009).CrossRefGoogle Scholar
Paulus, A.S., Heinzler, R., Ooi, H.W., and Franzre, M.: Temperature-switchable agglomeration of magnetic particles designed for continuous separation processes in biotechnology. ACS Appl. Mater. Interfaces 7, 14279 (2015).CrossRefGoogle ScholarPubMed
Boal, A.K., Das, K., Gray, M., and Rotello, V.M.: Monolayer exchange chemistry of γ-Fe2O3 nanoparticles. Chem. Mater. 14, 2628 (2002).CrossRefGoogle Scholar
Tao, K., Dou, H., and Sun, K.: Facile interfacial coprecipitation to fabricate hydrophilic amine-capped magnetite nanoparticles. Chem. Mater. 18, 5273 (2006).10.1021/cm0614113CrossRefGoogle Scholar
Akbarzadeh, A., Samiei, M., Joo, S.W., Anzaby, M., Hanifehpour, Y., Nasrabadi, H.T., and Davaran, S.: Synthesis, characterization and in vitro studies of doxorubicin-loaded magnetic nanoparticles grafted to smart copolymers on A549 lung cancer cell line. J. Nanobiotechnology 10, 1 (2012).CrossRefGoogle ScholarPubMed
Sanchez, L.M., Martin, D.A., Alvarez, V.A., and Gonzalez, J.S.: Polyacrylic acid-coated iron oxide magnetic nanoparticles: The polymer molecular weight influence. Colloids Surf. A Physiochem. Eng. Asp. 543, 28 (2018).CrossRefGoogle Scholar
Ahmad, H., Sharafat, M.K., Alam, M.A., Rahman, M.M., Tauer, K., Minami, H., Sultana, M.S., Das, B.K., and Shabnam, R.: Magnetite loaded cross-linked polystyrene composite particles prepared by modified suspension polymerization and their potential use as adsorbent for arsenic (III). Macromol. Res. 25, 671 (2017).CrossRefGoogle Scholar
Pelton, R.H. and Chibante, P.: Preparation of aqueous lattices with N-isopropylacrylamide. Colloids Surf. 20, 247 (1986).CrossRefGoogle Scholar
Okubo, M., Ahmad, H., and Komura, M.: Preparation of temperature-sensitive polymer particles having different lower critical solution temperatures. Colloid Polym. Sci. 274, 1188 (1996).CrossRefGoogle Scholar
Ghosh, S., Jiang, W., McClements, J.D., and Xing, B.: Colloidal stability of magnetic iron oxide nanoparticles: Influence of natural organic matter and synthetic polyelectrolytes. Langmuir 27, 8036 (2011).CrossRefGoogle ScholarPubMed
Bao, N., Shen, L., Wang, Y., Padhan, P., and Gupta, A.: A facile thermolysis route to monodisperse ferrite nanocrystals. J. Am. Chem. Soc. 129, 12374 (2007).CrossRefGoogle ScholarPubMed
Phu, N.D., Ngo, D.T., Huy, H.L., Luong, N.H., and Nguyen, H.H.: Crystallization process and magnetic properties of amorphous iron oxide nanoparticles. J. Phys. D Appl. Phys. 44, 34 (2011).CrossRefGoogle Scholar
Silva, V.A.J., Andrade, P.L., Silva, M.P.C., Bustamante, A., Valladares, L.D.L.S., and Albino Aguiar, J.: Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides. J Magn. Magn. Mater. 343, 138 (2013).CrossRefGoogle Scholar