Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T14:15:05.113Z Has data issue: false hasContentIssue false

Silicon cross doping and its effect on the Si or Be implantation doping of gallium arsenide grown on (100) silicon by metalorganic chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

B. Molnar
Affiliation:
Naval Research Laboratory, Washington, DC 20375
P. Chi
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
D. Simons
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Get access

Abstract

A study of the cross doping of GaAs layers grown by a two-step metalorganic chemical vapor deposition on Si substrates is reported. All as-grown, unintentionally doped layers of GaAs were n-type, and the carrier profiles tracked the Si atomic profiles. Furnace annealing at 850 °C for 30 min in an arsine overpressure, which is used to improve the crystalline quality of the GaAs near the heterointerface, caused additional Si to diffuse into the GaAs layer. Comparison of the Si concentration at the interface with the carrier concentration suggested the presence of compensating acceptors. Resonance Raman scattering by the SiAs local vibrational mode near the interface shows that a fraction of the Si atoms are localized at the As sites. The furnace annealing increased the Si concentration in the 1.7–1.8 μm thick initially grown GaAs layer. This, in turn, influenced the electrical profiles created with Si or Be implantation on a 2.3 μm thick GaAs layer.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Tsaur, B. Y. and Metze, G. M., Appl. Phys. Lett. 45, 535 (1984).CrossRefGoogle Scholar
2.Akiyama, M., Kawarada, Y., and Kaminishi, K., Jpn. J. Appl. Phys. 23, L843 (1984).Google Scholar
3.Uppal, P. N. and Kroemer, H., J. Appl. Phys. 58, 2195 (1985).Google Scholar
4.Fang, S. F., Adomi, K., Iyer, S., Morkoc, H., Zabel, H., Choi, C., and Otsuka, N., J. Appl. Phys. 68, R31 (1990).CrossRefGoogle Scholar
5.Lee, J. W., Shichijo, H., Tsai, H. L., and Matyi, R. J., Appl. Phys. Lett. 50, 31 (1987).Google Scholar
6.Hsieh, K. C., Feng, M. S., Stillman, G. E., Ito, C. R., Mclntyre, D. G., Kaliski, R. W., and Feng, M., in Heteroepitaxy on Silicon: Fundamentals, Structures, and Devices, edited by Choi, Ff. K., Hull, R., Ishiwara, H., and Nemanich, R. J. (Mater. Res. Soc. Symp. Proc. 116, Pittsburgh, PA, 1988), p. 261.Google Scholar
7.Lum, R. M., Klingert, J. K., Davidson, B. A., and Lamont, M. G., in Heteroepitaxy on Silicon II, edited by Fan, J. C. C., Phillips, J. M., and Tsaur, B-Y. (Mater. Res. Soc. Symp. Proc. 91, Pittsburgh, PA, 1987), p. 126.Google Scholar
8.Macrander, A. T., Chu, S. N. G., Strege, K. E., Bloemeke, A. F., and Johnson, W. D., Jr., Appl. Phys. Lett. 44, 615 (1984).Google Scholar
9.Andre, J. P., Hallais, J., and Shiller, C., J. Cryst. Growth 31, 147 (1975).Google Scholar
10.Radhakrishnan, G., McCullogh, O., Cser, J., and Katz, J., Appl. Phys. Lett. 52, 731 (1988).CrossRefGoogle Scholar
11.Ahearn, J. S. and Uppal, P. N., in Heteroepitaxy on Silicon II, edited by Fan, J. C. C., Phillips, J. M., and Tsaur, B-Y. (Mater. Res. Soc. Symp. Proc. 91, Pittsburgh, PA, 1987), p. 167.Google Scholar
12.Uppal, P. N., Ahearn, J. S., and Duncain, S. W., in Heteroepitaxy on Silicon: Fundamentals, Structures, and Devices, edited by Choi, H. K., Hull, R., Ishiwara, H., and Nemanich, R. J. (Mater. Res. Soc. Symp. Proc. 116, Pittsburgh, PA, 1988), p. 129.Google Scholar
13.Hobson, W. S., Pearton, S. J., Short, K. T., Jones, K. S., Vernon, S. M., Jacobson, D. C., Abernathy, C. R., and Caruso, R., in Heteroepitaxy on Silicon: Fundamentals, Structures, and Devices, edited by Choi, H. K., Hull, R., Ishiwara, H., and Nemanich, R. J. (Mater. Res. Soc. Symp. Proc. 116, Pittsburgh, PA, 1988), p. 147.Google Scholar
14.Nozaki, S., Murray, J. J., Wu, A. T., George, T., Weber, E. R., and Umeno, M., Appl. Phys. Lett. 55, 1674 (1989).Google Scholar
15., FreundlichLeycuras, A.Grenet, J. C. and Grattepain, C., Appl. Phys. Lett. 53, 2635 (1988).CrossRefGoogle Scholar
16.Azoulay, R., Draidia, N., Gao, Y., Dugrand, L., and Leroux, G., Appl. Phys. Lett. 54, 2402 (1989).CrossRefGoogle Scholar
17.Schubert, E. F., J. Vac. Sci. Technol. A 8, (1990).Google Scholar
18.Harrison, W. A., Kraut, E. A., Waldrop, J. R., and Grant, R. W., Phys. Rev. B 18, 4402 (1978).CrossRefGoogle Scholar
19.Ramsteiner, M., Wagner, J., Ennen, H., and Maier, M., Phys. Rev. B 38, 10669 (1988).Google Scholar
20.Ito, C. R., Feng, M., Eu, V. K., and Kim, H. B., in Heteroepitaxy on Silicon, edited by Fan, J. C. C. and Poate, J. M. (Mater. Res. Soc. Symp. Proc. 67, Pittsburgh, PA, 1986), p. 197.Google Scholar
21.Wilson, R. G., Stevie, F. A., and Magee, C. W., Secondary Ion Mass Spectrometry (John Wiley and Sons, New York, 1989).Google Scholar
22.Zabel, H., Lucas, N., Feidenhans, R., Als-Nielsen, J., and Morkoc, H.., Superlattices and Microstructures 3, 515 (1987).CrossRefGoogle Scholar
23.Kavanagh, K. L., Magee, C. M., Sheets, J., and Mayer, J. W., J. Appl. Phys. 64, 1845 (1988).Google Scholar
24.Greiner, M. E. and Gibbons, J. F., Appl. Phys. Lett. 44, 750 (1984).CrossRefGoogle Scholar
25.Deppe, D. G., Holonyak, N., Jr., and Baker, J. E., Appl. Phys. Lett. 52, 12 (1988).Google Scholar
26.Pearton, S. J., Malm, D. L., Heimbrook, L. A., Kovalchick, J., Abernathy, C. R., Caruso, R., Vernon, S. M., and Haven, V. E., Appl. Phys. Lett. 51, 682 (1987).CrossRefGoogle Scholar
27.Pearton, S. J., Vernon, S. M., Abernathy, C. R., Short, K. T., Caruso, R., Stavola, M., Gibson, J. M., Haven, V. E., White, A. E., and Jacobson, D. C., J. Appl. Phys. 62, 862 (1987).Google Scholar
28.Kroemer, H., J. Cryst. Growth 81, 1983 (1987).CrossRefGoogle Scholar
29.Vernon, S. M., Pearton, S. J., Gibson, J. M., Short, K. T., and Haven, V. E., Appl. Phys. Lett. 50, 1161 (1987).CrossRefGoogle Scholar
30.Kim, T. S. and Kao, Y. C., in Layered Structures—Heteroepitaxy, Superlattices, Strain, and Metastability, edited by Dodson, B. W., Schowalter, L. J., Cunningham, J. E., and Pollak, F. H. (Mater. Res. Soc. Symp. Proc. 160, Pittsburgh, PA, 1990), p. 475.Google Scholar
31.Rao, M. V., Babu, R. S., Berry, A. K., Dietrich, H. B., and Bottka, N., J. Electron. Mater. 19, 789 (1990).CrossRefGoogle Scholar
32.Chands, N., Ren, F., Pearton, S. J., Shah, N. J., and Cho, A. Y., IEEE Electron Dev. Lett. EDL-8, 185 (1987).CrossRefGoogle Scholar