Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T03:22:24.890Z Has data issue: false hasContentIssue false

Shrinkage anisotropy of glass powder compacts sintered in dilatometers

Published online by Cambridge University Press:  31 January 2011

Aldo R. Boccaccini
Affiliation:
Institute for Mechanics and Materials, University of California, San Diego, La Jolla, California 92093–0404
Get access

Abstract

Dilatometer push rods exert uniaxial compressive stresses on powder compacts undergoing sintering. In this study the effect of such stresses on the shrinkage anisotropy behavior of glass powder compacts is considered. A shrinkage anisotropy factor (k), defined by the ratio between axial and radial strain, is used to quantify the anisotropy in cylindrical compacts (k = 1 represents isotropic shrinkage). The available experimental data in the literature indicate that the effect of the applied dilatometer stress is to increase the value of k over that of free sintering conditions. For the small stresses exerted by the dilatometer push rods, it is shown that k is always. 1. The common practice of calculating the sintered density from uniaxial dilatometer data, ignoring the existence of shrinkage anisotropy, is shown to lead to significant errors, even for values of k only slightly different from k = 1.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.German, R. M., Sintering Theory and Practice (John Wiley and Sons, New York, 1996), p. 40.Google Scholar
2.Rahaman, M. N. and De Jonghe, L. C., Rev. Sci. Instrum. 55, 2007 (1984).Google Scholar
3.Rahaman, M. N.et al., J. Am. Ceram. Soc. 70, 766 (1987).CrossRefGoogle Scholar
4.Olevsky, E. and Skorohod, V., J. de Phys. IV 3, 739 (1993).Google Scholar
5.Giess, E. A., Fletcher, J. P., and Herron, L. W., J. Am. Ceram. Soc. 67, 549 (1984).CrossRefGoogle Scholar
6.Stefanovic, D., Pejovic, S., Petrovik, V., and Ristic, M. M., in Sintering Processes, Materials Science Research, edited by Kuczynski, G. C. (Plenum Press, New York, London, 1980), Vol. 13, p. 167.CrossRefGoogle Scholar
7.Hausner, H. H., Progress in Powder Metallurgy 19, 67 (1963).Google Scholar
8.Boccaccini, A. R., J. Mater. Sci. 30, 5652 (1995).CrossRefGoogle Scholar
9.Rahaman, M. N. and De Jonghe, L. C., J. Am. Ceram. Soc. 73, 707 (1990).CrossRefGoogle Scholar
10.Boccaccini, A. R. and Ondracek, G., Glastech. Ber. 65, 73 (1992).Google Scholar
11.Exner, H. E. and Giess, E. A., J. Mater. Res. 3, 122 (1988).CrossRefGoogle Scholar
12.Boccaccini, A. R. and Olevsky, E., Met. Mat. Trans. 28A, 2397 (1997).CrossRefGoogle Scholar
13.Scherer, G. W., J. Am. Ceram. Soc. 69, C206 (1986).Google Scholar
14.Rahaman, M. N. and De Jonghe, L. C., J. Am. Ceram. Soc. 73, 602 (1990).CrossRefGoogle Scholar
15.Chu, M-Y., De Jonghe, L. C., and Rahaman, M. N., Acta Metall. 37, 1415 (1989).CrossRefGoogle Scholar
16.Rahaman, M. N. and De Jonghe, L. C., J. Am. Ceram. Soc. 67, C205 (1984).CrossRefGoogle Scholar
17.Ducamp, V. C. and Raj, R., J. Am. Ceram. Soc. 72, 798 (1989).CrossRefGoogle Scholar
18.Jagota, A.et al., J. Am. Ceram. Soc. 73, 2266 (1990).CrossRefGoogle Scholar
19.Dutton, R. E. and Rahaman, M. N., J. Am. Ceram. Soc. 75, 2146 (1992).CrossRefGoogle Scholar
20.Jeng, D-Y. and Rahaman, M. N., J. Mater. Sci. 28, 4421 (1993).CrossRefGoogle Scholar
21.Cai, P. C., Messing, G. L., and Green, D. L., J. Am. Ceram. Soc. 80, 445 (1997).Google Scholar
22.De Jonghe, L. C., Rahaman, M. N., and Hsueh, C. H., Acta Metall. 34, 1467 (1986).CrossRefGoogle Scholar
23.Su, H. and Johnson, D. L., J. Am. Ceram. Soc. 79, 3211 (1996).CrossRefGoogle Scholar
24.Boccaccini, A. R., Microsc. Analysis 45 (1), 9 (1997).Google Scholar
25.Mizuno, Y., Kawasaki, A., and Watanabe, R., Met. Mat. Trans. 26B, 75 (1995).CrossRefGoogle Scholar