Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T14:06:15.906Z Has data issue: false hasContentIssue false

Self-assembled block copolymer membranes: From basic research to large-scale manufacturing

Published online by Cambridge University Press:  24 September 2013

Suzana P. Nunes*
Affiliation:
Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
Ali Reza Behzad
Affiliation:
Imaging and Characterization Lab, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
Klaus-Viktor Peinemann
Affiliation:
Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Order and porosity of block copolymer membranes have been controlled by solution thermodynamics, self-assembly, and macrophase separation. We have demonstrated how the film manufacture with long-range order can be up-scaled with the use of conventional membrane production technology.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Prigogine, I. and Stengers, I.: Order Out of Chaos, Man’s New Dialogue with Nature (Bantam Books, Toronto, 1984).Google Scholar
Tang, C., Lennon, E.M., Friedrickson, G.H., Kramer, E.J., and Hawker, C.J.: Evolution of block copolymer lithography to highly ordered square arrays. Science 322, 429432 (2008).CrossRefGoogle ScholarPubMed
Hawker, C.J. and Russell, T.P.: Block copolymer lithography: Merging “bottom-up” with “top-down” processes. MRS Bull. 30, 952966 (2005).CrossRefGoogle Scholar
Park, C., Yoon, J., and Thomas, E.L.: Enabling nanotechnology with self assembled block copolymer patterns. Polymer 44, 67256760 (2003).CrossRefGoogle Scholar
O’Neill, M. and Kelly, S.M.: Ordered materials for organic electronics and photonics. Adv. Mater. 23, 566584 (2011).CrossRefGoogle ScholarPubMed
Lehn, J.M.: Toward self-organization and complex matter. Science 295, 24002403 (2002).CrossRefGoogle ScholarPubMed
Lehn, J.M.: Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem. Int. Ed. 27, 89112 (1988).CrossRefGoogle Scholar
Almarsson, O. and Zaworotko, M.J.: Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines? Chem. Commun. 17, 18891896 (2004).CrossRefGoogle Scholar
Rowsell, J.L.C. and Yaghi, O.M.: Metal–organic frameworks: A new class of porous materials. Microporous Mesoporous Mater. 73, 314 (2004).CrossRefGoogle Scholar
Bates, F.S., Hillmyer, M.A., Lodge, T.P., Bates, C.M., Delaney, K.T., and Fredrickson, G.H.: Multiblock polymers: Panacea or pandora's box? Science 336, 434440 (2012).CrossRefGoogle ScholarPubMed
Peinemann, K.V., Abetz, V., and Simon, P.F.W.: Asymmetric superstructure formed in a block copolymer via phase separation. Nat. Mater. 6, 992996 (2007).CrossRefGoogle Scholar
Nunes, S.P., Sougrat, R., Hooghan, B., Anjum, D.H., Behzad, A.R., Zhao, L., Pradeep, N., Pinnau, I., Vainio, U., and Peinemann, K-V.: Ultraporous films with uniform nanochannels by block copolymer micelles assembly. Macromolecules 43, 80798085 (2010).CrossRefGoogle Scholar
Nunes, S.P., Behzad, A.R., Hooghan, B., Sougrat, R., Karunakaran, M., Pradeep, N., Vainio, U., and Peinemann, K-V.: Switchable pH-responsive polymeric membranes prepared via block copolymer micelle assembly. ACS Nano 5, 35163522 (2011).CrossRefGoogle ScholarPubMed
Nunes, S.P., Karunakaran, M., Pradeep, N., Behzad, A.R., Hooghan, B., Sougrat, R., He, H., and Peinemann, K-V.: From micelle supramolecular assemblies in selective solvents to isoporous membranes. Langmuir 27, 1018410190 (2011).CrossRefGoogle ScholarPubMed
Dorin, R.M., Salomon Marques, D., Sai, H., Vainio, U., Phillip, W.A., Peinemann, K-V., Nunes, S.P., and Wiesner, U.: Solution small-angle x-ray scattering as a screening and predictive tool in the fabrication of asymmetric block copolymer membranes. ACS Macro Lett. 1, 614617 (2012).CrossRefGoogle ScholarPubMed
Marques, D., Vainio, U., Moreno Chaparro, N., Calo, V.M., Bezahd, A.R., Pitera, J., Peinemann, K-V., and Nunes, S.P.: Self-assembly in casting solutions of block copolymer membranes. Soft Matter 9, 55575564 (2013).CrossRefGoogle Scholar
Nunes, S.P. and Peinemann, K.V.: Membrane Technology in the Chemical Industry, 2nd ed. (Wiley-VCH, Weinheim, Germany, 2006).CrossRefGoogle Scholar
Hashimoto, T.: Dynamics in spinodal decomposition of polymer mixtures. Phase Transitions 12, 47119 (1988).CrossRefGoogle Scholar
Zhang, L., Yu, K., and Eisenberg, A.: Ion-induced morphological changes in crew-cut aggregates of amphiphilic block copolymers. Science 272, 17771779 (1996).CrossRefGoogle ScholarPubMed
Phillip, W.A., Mika Dorin, R., Werner, J., Hoek, E.M.V., Wiesner, U., and Elimelech, M.: Tuning structure and properties of graded triblock terpolymer-based mesoporous and hybrid films. Nano Lett. 11, 28922900 (2011).CrossRefGoogle ScholarPubMed