Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T01:05:03.670Z Has data issue: false hasContentIssue false

Selective chemical etching of hexagonal boron nitride compared to cubic boron nitride

Published online by Cambridge University Press:  31 January 2011

Stephen J. Harris
Affiliation:
Physics and Physical Chemistry Department, General Motors R–D Center, Warren, Michigan 48090-9055
Anita M. Weiner
Affiliation:
Physics and Physical Chemistry Department, General Motors R–D Center, Warren, Michigan 48090-9055
Gary L. Doll
Affiliation:
Physics and Physical Chemistry Department, General Motors R–D Center, Warren, Michigan 48090-9055
Wen-Jin Meng
Affiliation:
Physics and Physical Chemistry Department, General Motors R–D Center, Warren, Michigan 48090-9055
Get access

Abstract

A BN film containing comparable amounts of sp2 and sp3 phases was subjected to a gas-phase chemical etch in a hot-filament environment containing 1% CH4 in H2. After a partial etch, examination by FTIR shows that the sp2 was preferentially etched, leaving a larger sp3 fraction than in the unetched film. The possibility that preferential etching could be used to increase the purity of cBN films is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kester, D. J. and Messier, R., J. Appl. Phys. 72, 504 (1992).CrossRefGoogle Scholar
2.Mirkarimi, P. B., McCarty, K. F., Medlin, D. L., Wolfer, W. G., Friedmann, T. A., Klaus, E. J., Cardinale, G. F., and Howitt, D. G., J. Mater. Res. 9, 2925 (1994).CrossRefGoogle Scholar
3.Harris, S. J. and Weiner, A. M., J. Appl. Phys. 74, 1022 (1993).CrossRefGoogle Scholar
4.Harris, S. J. and Weiner, A. M., Appl. Phys. Lett. 55, 2179 (1989).CrossRefGoogle Scholar
5.Kiel, F., Cotarelo, M., Delplancke, M. P., and Winand, R., Thin Solid Films 270, 118 (1995).CrossRefGoogle Scholar
6.Yarbrough, W. A., J. Vac. Sci. Technol. A9, 1145 (1991).CrossRefGoogle Scholar
7.Harris, S. J., Doll, G. L., Chance, D. C., and Weiner, A. M., Appl. Phys. Lett. 67, 2314 (1995).CrossRefGoogle Scholar
8.Harris, S. J. and Weiner, A. M., J. Appl. Phys. 67, 6520 (1990).CrossRefGoogle Scholar
9.Ballal, A. K., Salamanca-Riba, L., Doll, G. L., Taylor, C. A., and Clarke, R., J. Mater. Res. 7, 1618 (1992).CrossRefGoogle Scholar
10.Harris, S. J., Belton, D. N., Weiner, A. M., and Schmieg, S. J., J. Appl. Phys. 66, 5353 (1989).CrossRefGoogle Scholar
11.Hsu, W. L., J. Vac. Sci. Technol. A6, 1803 (1988).CrossRefGoogle Scholar
12.Vietzke, E., Flaskamp, K., Phillips, V., Esser, G., Wienhold, P., and Winter, J., J. Nucl. Mater. 145/147, 443 (1987).CrossRefGoogle Scholar
13.Bartl, A., Bohr, S., Haubner, R., and Lux, B., Int. J. Refractory Metals & Hart Materials 14, 145 (1996).CrossRefGoogle Scholar