Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T15:23:11.793Z Has data issue: false hasContentIssue false

Scanning tunneling microscope observations of polymer fracture surfaces

Published online by Cambridge University Press:  31 January 2011

D.M. Kulawansa
Affiliation:
Department of Physics, Washington State University, Pullman, Washington 99164-2814
S.C. Langford
Affiliation:
Department of Physics, Washington State University, Pullman, Washington 99164-2814
J.T. Dickinson
Affiliation:
Department of Physics, Washington State University, Pullman, Washington 99164-2814
Get access

Abstract

Scanning tunneling microscope observations of gold-coated polymer fracture surfaces are reported. We compare nm-scale surface features of poly(methyl methacrylate) (PMMA) fractured under three different loading conditions: in tension at room temperature, in tension at liquid nitrogen temperature, and in the double torsion geometry at room temperature (slow crack growth). Fracture surfaces of polystyrene and polycarbonate loaded in tension at room temperature are also described. Each of these surfaces shows distinctive nm-scale features which we interpret in terms of the interaction between craze growth (fibril formation) and crack growth along the craze boundary. The resolution of these images is sufficient to greatly complement other fractographic studies.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Roulin-Moloney, A. C., in Fractography and Failure Mechanisms of Polymers and Composites, edited by Roulin-Moloney, A. C. (Elsevier Applied Science, London, 1989), pp. 4386.Google Scholar
2.Rugar, D. and Hansma, P., Phys. Today 43, 23 (1990).CrossRefGoogle Scholar
3.Albrecht, T. R. and Quate, C. F., J. Appl. Phys. 62, 2599 (1987).Google Scholar
4.Jaklevic, R. C., Elie, L., Shen, Weidian, and Chen, J. T., J. Vac. Sci. Technol. A 6, 448 (1988).CrossRefGoogle Scholar
5.Jaklevic, R. C., Elie, L., Shen, Weidian, and Chen, J. T., Appl. Phys. Lett. 52, 1656 (1988).Google Scholar
6.Langford, S. C., Zhenyi, Ma, Jensen, L. C., and Dickinson, J. T., J. Vac. Sci. Technol. A 8, 3470 (1990).Google Scholar
7.Reiss, G., Vancea, J., Wittmann, H., Zweck, J., and Hoffmann, H., J. Appl. Phys. 67, 1156 (1990).CrossRefGoogle Scholar
8.Denley, D. R., J. Vac. Sci. Technol. A 8, 603 (1990).Google Scholar
9.Lyding, J. W., Skala, S., Hubacek, J. S., Brockenbrough, R., and Gammie, G., Rev. Sci. Instrum. 59, 1897 (1988).Google Scholar
10.Fields, R. J. and Ashby, M. F., Philos. Mag. A 33, 33 (1976).CrossRefGoogle Scholar
11.Doyle, M. J., J. Mater. Sci. 18, 687 (1983).Google Scholar
12.Berger, L. L., Macromol. 22, 3162 (1989).CrossRefGoogle Scholar
13.Kramer, E. J., Adv. Polym. Sci. 52/53, 156 (1983).CrossRefGoogle Scholar
14.Paredes, E. and Fischer, E. W., Makromol. Chem. 180, 2707 (1970).Google Scholar
15.Lednicky, F. and Pelzbauer, Z., J. Polymer Sci. C 38, 375 (1972).Google Scholar
16.Robertson, R. E. and Mindroiu, V. E., Polym. Eng. Sci. 27, 55 (1987).CrossRefGoogle Scholar
17.Donald, A. M. and Kramer, E. J., Philos. Mag A 43, 857 (1981).CrossRefGoogle Scholar
18.Döll, W., Adv. Polym. Sci. 52/53, 104 (1983).Google Scholar
19.Paredes, E. and Fischer, E. W., J. Polym. Sci. Polym. Phys. Ed. 20, 929 (1982).CrossRefGoogle Scholar
20.Bauwens-Crowet, C. and Bauwens, J. C., J. Mater. Sci. 14, 1817 (1979).Google Scholar
21.Bird, R. J., Mann, J., Pogany, G., and Rooney, G., Polymer 7, 307 (1966).CrossRefGoogle Scholar
22.Morgan, R. J. and O'Neal, J. E., Polymer 20, 375 (1979).CrossRefGoogle Scholar