Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-04T20:29:59.819Z Has data issue: false hasContentIssue false

Scanning tunneling microscope observations of metallic glass fracture surfaces

Published online by Cambridge University Press:  03 March 2011

D.M. Kulawansa
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164–2814
J.T. Dickinson
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164–2814
S.C. Langford
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164–2814
Yoshihisa Watanabe
Affiliation:
Department of Materials Science and Engineering, National Defense Academy, Hashirimizu, Yokosuka, Kanagawa 239, Japan
Get access

Abstract

We report scanning tunneling microscope observations of fracture surfaces formed during catastrophic crack growth in three metallic glasses: Ni56Cr18Si22B4, Co69Fe4Ni1Mo2B12Si12, and Fe78B13Si9. Macroscopically, the first two glasses fail along a slip band formed during loading and display a characteristic, μm-scale pattern of vein-like ridges; in contrast, Fe78B13Si9 displays little slip prior to fracture, and its fracture surface shows a μm-scale chevron pattern of steps. STM observations of fracture surfaces of all three materials show nm-scale grooves. The grooves in Co69Fe4Ni1Mo2B12Si12 are especially prominent and display stepped edges which we attribute to the intersection of shear bands with the surface. STM observations of the vein-like features on Ni56Cr18Si22B4 also show stepped edges. We attribute the vein features to the interaction of adjacent crack fingers in which the material between adjacent fingers fails in plane stress. The origin of the grooves is uncertain, but may be due to other shear instabilities along crack fingers.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Klement, W. Jr., Willens, R. H., and Duwez, P., Nature 187, 869 (1960).CrossRefGoogle Scholar
2Sethi, V. K., Gibala, R., and Heuer, A. H., Scripta Metall. 12, 207 (1978).CrossRefGoogle Scholar
3Pampillo, C. A., J. Mater. Sci. 10, 1194 (1975).CrossRefGoogle Scholar
4Gilman, J. J., J. Appl. Phys. 46, 1625 (1975).CrossRefGoogle Scholar
5Rice, R. W., in Fmctogmphy of Glasses and Ceramics, edited by Varner, J. R. and Frechette, V. D. (The American Ceramic Society, Westerville, OH, 1988), pp. 356.Google Scholar
6Davis, L. A., in Metallic Glasses (American Society for Metals, Metals Park, OH, 1978), p. 190.Google Scholar
7Langford, S. C., Zhenyi, M., Jensen, L. C., and Dickinson, J. T., J. Vac. Sci. Technol. A 8, 3470 (1990).CrossRefGoogle Scholar
8Kulawansa, D. M., langford, S. C., and Dickinson, J. T., J. Mater.Res. 7, 1292 (1992).CrossRefGoogle Scholar
9Habib, K. and Abdullah, A., J. Mater. Sci. Lett. 9, 1055 (1990).CrossRefGoogle Scholar
10Wiesendanger, R., Ringger, M., Rosenthaler, L., Hidber, H. R., Oelhafen, P., Rudin, H., and Güntherodt, H-J., Surf. Sci. 181, 46 (1987).CrossRefGoogle Scholar
11Watanabe, Y., Dickinson, J. T., Kulawansa, D. M., and Lang-ford, S.C., Memoirs of the National Defense Academy, Japan 31, 53 (1992).Google Scholar
12Watanabe, Y., Kubozoe, T., and Nakamura, Y., J. Mater. Res. 7, 1396 (1992).CrossRefGoogle Scholar
13Watanabe, Y. and Nakamura, Y., J. Mater. Sci. Lett, (in press).Google Scholar
14Lyding, J. W., Skala, S., Hubacek, J. S., Brockenbrough, R., and Gammie, G., Rev. Sci. Instrum. 59, 1897 (1988).CrossRefGoogle Scholar
15Reiss, G., Vancea, J., Wittmann, H., Zweck, J., and Hoffmann, H., J. Appl. Phys. 67, 1156 (1990).CrossRefGoogle Scholar
16Reiss, G., Schneider, F., Vancea, J., and Hoffmann, H., Appl. Phys. Lett. 57, 867 (1990).CrossRefGoogle Scholar
17Pampillo, C. A. and Chen, H. S., Mater. Sci. Eng. 13, 181 (1974).CrossRefGoogle Scholar
18Diko, P., Ocelik, V., Hajko, V. Jr., Miskuf, J., and Csach, K., Kovove Materialy 25, 523 (1987).Google Scholar
19Robertson, R. E. and Mindroiu, V. E., Polym. Eng. Sci. 27, 55 (1987).CrossRefGoogle Scholar
20Robertson, R. E. and Mindroiu, V. E., J. Mater. Sci. 20, 2801 (1985).CrossRefGoogle Scholar
21Kulawansa, D. M., Dickinson, J. T., Langford, S. C., and Watanabe, Y., unpublished.Google Scholar
22Noskova, N. I., Vildanova, N. F., Filippov, Yu. I., and Potapov, A. P., Phys. Status Solidi A 87, 549 (1985).CrossRefGoogle Scholar
23E. Ben-Jacob, Godbey, R., Goldenfeld, N. D., Koplik, J., Levine, H., Mueller, T., and Sander, L. M., Phys. Rev. Lett. 55, 1315 (1985).Google Scholar
24La Roche, H., Fernandez, J. F., Octavio, M., Loeser, A. G., and Lobb, C. J., Phys. Rev. A 44, R6185 (1991).CrossRefGoogle Scholar
25Leamy, H. J., Chen, H. S., and Wang, T. T., Metall. Trans. 3, 699 (1972).CrossRefGoogle Scholar
26Spaepen, F. and Turnbull, D., Scripta Metall. 8, 563 (1974).CrossRefGoogle Scholar
27Argon, A. S. and Salama, M. M., Mater. Sci. Eng. 23, 219 (1976).CrossRefGoogle Scholar
28Künzi, H. U., in Glassy Metals ü: Atomic Structure and Dynamics, Electronic Structure, Magnetic Properties, edited by Beck, H. and Güntherodt, H-J. (Springer-Verlag, Berlin, 1983), pp. 169216.CrossRefGoogle Scholar
29Broek, D., Elementary Engineering Fracture Mechanics, 4th ed. (Martinus Nijhoff, Dordrecht, The Netherlands, 1986), p. 113.Google Scholar
30Swain, M. V., Lawn, B. R., and Burns, S. J., J. Mater. Sci. 9, 175 (1974)CrossRefGoogle Scholar