Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T15:14:27.274Z Has data issue: false hasContentIssue false

Scanning electron acoustic microscopy of electric domains in ferroelectric materials

Published online by Cambridge University Press:  31 January 2011

MengLu Qian
Affiliation:
Shanghai Institute of Acoustics, Tongji University, Shanghai 200092, People's Republic of China
XianMei Wu
Affiliation:
Shanghai Institute of Acoustics, Tongji University, Shanghai 200092, People's Republic of China
QingRui Yin
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, People's Republic of China
BingYing Zhang
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, People's Republic of China
John H. Cantrell
Affiliation:
National Aeronautics and Space Administration, Langley Research Center, Mail Stop 231, Hampton, Virginia 23681-2199
Get access

Abstract

Electric domains in single-crystal and polycrystalline barium titanate (BaTiO3) have been observed by use of scanning electron acoustic microscopy (SEAM). A model is presented of the SEAM signal generation, spatial resolution, and contrast mechanism associated with the imaging of electric domains in ferroelectric materials. The SEAM signal is found to depend directly on the sum of the piezoelectric coupling coefficient and spontaneous polarization of the domain, on the charge density of the electron beam interaction volume, and inversely on both the permittivity and the elastic constants of the material. Application of the model to BaTiO3 yields a contrast of roughly 3.5% from 90° domain structures and 6.8% from 180° domain structures.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Little, E.A., Phys. Rev. 98, 987 (1955).Google Scholar
2.Bradt, R.C. and Ansell, G. S., J. Am. Ceram. Soc. 52, 129 (1969).CrossRefGoogle Scholar
3.Authier, A. and Petroff, J.F., C. R. Acad. Sci. (Paris) 258, 4238 (1964).Google Scholar
4.Auciello, O., Gruverman, A., Tokumoto, H., Prakash, S.A., Aggarwal, S., and Ramesh, R., MRS Bull. 23(1), 33 (1998).CrossRefGoogle Scholar
5.Saurenbach, F. and Terris, B.D., Appl. Phys. Lett. 56, 1703 (1990).CrossRefGoogle Scholar
6.Eng, L.M., Friedrich, M., Fousek, J., and Gunter, P., J. Vac. Sci. Technol. B 14, 1191 (1996).CrossRefGoogle Scholar
7.Gruvermann, A., Auciello, O., and Tokumoto, H., Appl. Phys. Lett. 69, 3191 (1996).CrossRefGoogle Scholar
8.Cantrell, J.H., Qian, M.L., Chen, R.Y., and Yost, W.T., in AMD– Vol. 140, Acoustoptics and Acoustic Micrcroscopy, edited by Gracewski, S.M. and Kundu, T. (American Society of Mechanical Engineers, 1992).Google Scholar
9.Cargill, G.S., Nature 286, 691 (1980).CrossRefGoogle Scholar
10.Brandis, E. and Rosencwaig, A., Appl. Phys. Lett. 37, 98 (1980).CrossRefGoogle Scholar
11.Qian, M.L. and Cantrell, J.H., Mater. Sci. Eng. A122, 57 (1989).CrossRefGoogle Scholar
12.Davies, D.G. and Howie, A. (Inst. Phys. Conf. Ser. No. 68, Chapter 12, 1983) p. 467.Google Scholar
13.Cantrell, J.H., Qian, M.L., Ravichandran, M.V., and Knowles, K.M., Appl. Phys. Lett. 57, 1870 (1990).CrossRefGoogle Scholar
14.Davies, D.G., Howie, A., and Stavely-Smith, L., SPIE Proc. 368, 58 (1982).CrossRefGoogle Scholar
15.Goldstein, J.I., Newbury, D.E., Echlin, P., Joy, D.C., Fiori, C., and Lifshin, E., Scanning Electron Microscopy and X-Ray Microanalysis (Plenum, New York, 1981).CrossRefGoogle Scholar
16.Balk, L.J., Can. J. Phys. 64, 238 (1986).CrossRefGoogle Scholar