Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T19:54:46.589Z Has data issue: false hasContentIssue false

Room-temperature hydrogen-induced resistivity response of Pd/Mg–Ni films

Published online by Cambridge University Press:  31 January 2011

Chung Wo Ong*
Affiliation:
Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The structure and the response of the effective electrical resistivity 〈ρ〉 in hydrogenation–dehydrogenation processes of palladium-coated/magnesium-nickel (Pd/Mg–Ni) films were investigated as functions of Mg-to-Ni ratio, substrate temperature, and thickness of Pd overcoat. Films of noncrystalline structures with various Mg-to-Ni ratios showed prominent hydrogen-(H-)induced switching effect of 〈ρ〉. A film is supposed to contain segregated noncrystalline regions of different Mg-to-Ni ratios. The regions of an Mg-to-Ni ratio close to 2 are responsible for the switching processes. At room temperature, a dehydrogenation process is much slower than a hydrogenation process. Crystallization hindered the H-induced switching effect of 〈ρ〉. The use of a thicker Pd overcoat accelerated the change of 〈ρ〉 in the initial hydrogenating process but diminished the contrast. Results led to some discussions on the mechanisms governing the switching effects.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Richardson, T.J., Slack, J.L., Armitage, R.D., Kostecki, R., Farangis, B., and Rubin, M.D.: Switchable mirrors based on nickel-magnesium films. Appl. Phys. Lett. 78, 3047 (2001)CrossRefGoogle Scholar
2Richardson, T.J., Slack, J.L., Farangis, B., and Rubin, M.D.: Mixed metal films with switchable optical properties. Appl. Phys. Lett. 80, 1349 (2002)CrossRefGoogle Scholar
3Richardson, T.J., Farangis, B., Slack, J.L., Nachimuthu, P., Perera, R., Tamura, N., and Rubin, M.: X-ray absorption spectroscopy of transition metal-magnesium hydride thin films. J. Alloys Compd. 356, 204 (2003)CrossRefGoogle Scholar
4Hout, J.: Nanocrystalline Materials for Hydrogen Storage, edited by Nalwa, H.S. (American Scientific Publishers, Stevenson Ranch, CA, 2003), pp. 7980.Google Scholar
5Lohstroh, W., Westerwaal, R.J., van Mechelen, J.L.M., Chacon, C., Johansson, E., Dam, B., and Griessen, R.: Structural and optical properties of Mg2NiHx switchable mirrors upon hydrogen loading. Phys. Rev. B 70, 165411 (2004)CrossRefGoogle Scholar
6Yoshimura, K., Yamada, Y., and Okada, M.: Optical switching of Mg–Ni alloy thin films. Appl. Phys. Lett. 81, 4709 (2002)CrossRefGoogle Scholar
7Yoshimura, K., Bao, S., Yamada, Y., and Okada, M.: Optical switching property of Pd-capped Mg–Ni alloy thin films prepared by magnetron sputtering. Vacuum 80, 684 (2006)CrossRefGoogle Scholar
8Slack, J.L., Locke, J.C.W., Song, S.W., Ona, J., and Richardson, T.J.: Metal hydride switchable mirrors: Factors influencing dynamic range and stability. Sol. Energy Mater. Sol. Cells 90, 485 (2006)CrossRefGoogle Scholar
9Bao, S., Tajima, K., Yamada, Y., Okada, M., and Yoshimura, K.: Metal buffer layer inserted switchable mirrors. Sol. Energy Mater. Sol. Cells 90, 485 (2006)Google Scholar
10Bao, S., Yamada, Y., Okada, M., and Yohsimura, K.: Titanium-buffer-layer-inserted switchable mirror based on Mg–Ni alloy thin film. Jpn. J. Appl. Phys. 45, L588 (2006).CrossRefGoogle Scholar
11Borgschulte, A., Lohstroh, W., Westerwaal, R.J., Schreuders, H., Rector, J.H., Dam, B., and Griessen, R.: Combinatorial method for the development of a catalyst promoting hydrogen uptake. J. Alloys Compd. 404–406, 699 (2005)CrossRefGoogle Scholar
12Yoshimura, K., Yamada, Y., Okada, M., Tazawa, M., and Jin, P.: Room-temperature hydrogen sensor based on Pd-capped Mg2Ni thin films. Jpn. J. Appl. Phys. 43, L507 (2004).CrossRefGoogle Scholar
13Isidorsson, J., Giebels, I.A.M.E., Griessen, R., and Vece, M. Di: Tunable reflectance Mg–Ni–H films. Appl. Phys. Lett. 80, 2305 (2002)CrossRefGoogle Scholar
14van Mechelen, J.L.M., Noheda, B., Lohstroh, W., Westerwaal, R.J., Rector, J.H., Dam, B., and Griessen, R.: Mg–Ni–H films as selective coatings: Tunable reflectance by layered hydrogenation. Appl. Phys. Lett. 84, 3651 (2004)CrossRefGoogle Scholar
15Parkhutik, V., Matveeva, E., Makushok, Y., Rayon, E., and Richardson, T.J.: Optical and electrical properties of Mg/Ni alloy subjected to electrochemical hydrogenation. J. Electrochem. Soc. 152, H209 (2005).CrossRefGoogle Scholar
16Vece, M. Di, Eerden, A.M.J. van der, Grandjean, D., Westerwaal, R.J., Lohstroh, W., Nikitenko, S.G., Kelly, J.J., and Koningsberger, D.C.: Structure of the Mg2Ni switchable mirror: An EXAFS investigation. Mater. Chem. Phys. 91, 1 (2005)CrossRefGoogle Scholar
17Lokhorst, A.C., Heijna, M.C.R., Rector, J.H., Giebels, I.A.M.E., Koeman, N.J., and Dam, B.: The properties of pulsed laser deposited YH2 films for switchable devices. J. Alloys Compd. 356–357, 536 (2003)CrossRefGoogle Scholar
18Johansson, E., Chacon, C., Zlotea, C., Andersson, Y., and Hjörvarsson, B.: Hydrogen uptake and optical properties of sputtered Mg–Ni thin films. J. Phys.: Condens. Matter 16, 7649 (2004)Google Scholar
19Fournier, V., Marcus, P., and Olefjord, I.: Oxidation of magnesium. Surf. Interface Anal. 34, 494 (2002)CrossRefGoogle Scholar
20Moulder, J.F. and Chastain, J.: Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Perkin-Elmer Corporation, Physical Electronics Division, Norwalk, CT, 1992), p. 118.Google Scholar
21Mittal, V.K., Bera, S., Nithya, R., Srinivasan, M.P., Velmurugan, M.P., and Narasimhan, S.V.: Solid state synthesis of Mg–Ni ferrite and characterization by XRD and XPS. J. Nucl. Mater. 335, 302 (2004)CrossRefGoogle Scholar
22Moulder, J.F. and Chastain, J.: Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Perkin-Elmer Corporation, Physical Electronics Division, Norwalk, CT, 1992), p. 52.Google Scholar
23Isidorsson, J., Giebels, I.A.M.E., Arwin, H., and Griessen, R.: Optical properties of MgH2 measured in situ by ellipsometry and spectrophotometry. Phys. Rev. B 68, 115112 (2003)CrossRefGoogle Scholar
24Moyses, C. Araujo, Lebegue, S., and Eriksson, O.: Electronic and optical properties of a, g, and b phases of MgH2: A first-principles GW investigation. J. Appl. Phys. 98, 096106 (2005)CrossRefGoogle Scholar
25Orimo, S. and Fujii, H.: Materials science of Mg–Ni-based new hydrides. Appl. Phys. A 72, 167 (2001)CrossRefGoogle Scholar
26Borsa, D.M., Lohstroh, W., Gremaud, R., Rector, J.H., Dam, B., Wijngaarden, R.J., and Griessen, R.: Critical composition dependence of the hydrogenation of Mg2d Ni films. J. Alloys Compd. 428, 34 (2007)CrossRefGoogle Scholar