Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T01:16:18.233Z Has data issue: false hasContentIssue false

Room temperature wear study of Al0.4FeCrNiCox (x = 0, 0.25, 0.5, 1.0 mol) high-entropy alloys under oil lubricating conditions

Published online by Cambridge University Press:  06 February 2019

Saurav Kumar
Affiliation:
Department of Metallurgical and Materials Engineering, MNIT, Jaipur 302017, India
Amar Patnaik*
Affiliation:
Department of Mechanical Engineering, MNIT, Jaipur 302017, India
Ajaya Kumar Pradhan
Affiliation:
Department of Metallurgical and Materials Engineering, MNIT, Jaipur 302017, India
Vinod Kumar*
Affiliation:
Discipline of Metallurgy Engineering and Materials Science, IIT, Indore 453552, India
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

This study aims to investigate the sliding wear behavior of Al0.4FeCrNiCox (x = 0, 0.25, 0.5, 1.0 mol) high-entropy alloys (HEAs) under oil lubricating conditions at room temperature. Phase and microstructural characterizations of HEAs are performed by utilizing X-ray photoelectron spectroscopy (XRD) and scanning electron microscope (SEM). The compressive yield strength of Al0.4FeCrNiCox (x = 0, 0.25, 0.5, 1.0 mol) HEAs is observed to decrease from 1169.35 to 257.63 MPa. Plastic deformation up to 75% is achieved in the case of Al0.4FeCrNiCox=1 HEA. The microhardness of HEA samples is found to decrease from 377 to 199 HV after the addition of cobalt content from x = 0 to 1.0 mol. Thermal analysis is performed using a differential scanning calorimeter. It is confirmed that Al0.4FeCrNiCox (x = 0, 0.25, 0.5, 1.0 mol) HEAs do not undergo any phase change up to 1000 °C. The specific wear rate of Al0.4FeCrNiCox=1 HEA is observed to be highest in all wear conditions. The worn surfaces were analyzed by SEM with attached energy-dispersive spectroscopy, 3D profiling, and X-ray photoelectron spectroscopy (XPS).

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299303 (2004).CrossRefGoogle Scholar
Murty, B.S., Yeh, J.W., and Ranganathan, S.: High-Entropy Alloys (Elsevier, London, 2014).Google Scholar
Koch, C.C.: Nanocrystalline high-entropy alloys. J. Mater. Res. 32, 34353444 (2017).CrossRefGoogle Scholar
Maulik, O., Kumar, D., Kumar, S., Dewangan, S.K., and Kumar, V.: Structure and properties of light weight high entropy alloys: A brief review. Mater. Res. Express 5 (2018). https://doi.org/10.1088/2053-1591/aabbca.CrossRefGoogle Scholar
Munitz, A., Salhov, S., Hayun, S., and Frage, N.: Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy. J. Alloys Compd. 683, 221230 (2016).CrossRefGoogle Scholar
Zou, Y.: Nanomechanical studies of high-entropy alloys. J. Mater. Res., 33, 30353054 (2018).CrossRefGoogle Scholar
Shun, T.T. and Du, Y.C.: Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy. J. Alloys Compd. 479, 157160 (2009).CrossRefGoogle Scholar
Guo, Y., Liu, L., Zhang, Y., Qi, J., Wang, B., Zhao, Z., Shang, J., and Xiang, J.: A superfine eutectic microstructure and the mechanical properties of CoCrFeNiMox high-entropy alloys. J. Mater. Res., 33, 32583265 (2018).CrossRefGoogle Scholar
Ghassemali, E., Sonkusare, R., Biswas, K., and Gurao, N.P.: In situ study of crack initiation and propagation in a dual phase AlCoCrFeNi high entropy alloy. J. Alloys Compd. 710, 539546 (2017).CrossRefGoogle Scholar
Zhang, M. and Zhang, L.: Effect of Nb content on thermal stability, mechanical and corrosion behaviors of hypoeutectic CoCrFeNiNbx high-entropy alloys. J. Mater. Res., 33, 32763286 (2018).CrossRefGoogle Scholar
Wang, R., Zhang, K., Davies, C., and Wu, X.: Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication. J. Alloys Compd. 694, 971981 (2017).CrossRefGoogle Scholar
Lin, C.M. and Tsai, H.L.: Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy. Intermetallics 19, 288294 (2011).CrossRefGoogle Scholar
Kumar, D., Maulik, O., Sharma, V.K., Prasad, Y.V.S.S., and Kumar, V.: Understanding the effect of tungsten on corrosion behavior of AlCuCrFeMnWx high-entropy alloys in 3.5 wt% NaCl solution. J. Mater. Eng. Perform. 27, 44814488 (2018).CrossRefGoogle Scholar
Butler, T.M. and Weaver, M.L.: Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys. J. Alloys Compd. 674, 229244 (2016).CrossRefGoogle Scholar
Liu, Y.X., Cheng, C.Q., Shang, J.L., Wang, R., Li, P., and Zhao, J.: Oxidation behavior of high-entropy alloys AlxCoCrFeNi (x = 0.15, 0.4) in supercritical water and comparison with HR3C steel. Trans. Nonferrous Met. Soc. China 25, 13411351 (2015).CrossRefGoogle Scholar
Chen, X., Sui, Y., Qi, J., He, Y., Wei, F., Meng, Q., and Sun, Z.: Microstructure of Al1.3CrFeNi eutectic high entropy alloy and oxidation behavior at 1000 °C. J. Mater. Res. 32, 21092116 (2017).CrossRefGoogle Scholar
Wang, Y., Yang, Y., Yang, H., Zhang, M., and Qiao, J.: Effect of nitriding on the tribological properties of Al1.3CoCuFeNi2 high-entropy alloy. J. Alloys Compd. 725, 365372 (2017).CrossRefGoogle Scholar
Wang, Y., Yang, Y., Yang, H., Zhang, M., Ma, S., and Qiao, J.: Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy. Mater. Chem. Phys., 210, 233239 (2018).CrossRefGoogle Scholar
Yadav, S., Kumar, A., and Biswas, K.: Wear behavior of high entropy alloys containing soft dispersoids (Pb, Bi). Mater. Chem. Phys. 210, 222232 (2018).CrossRefGoogle Scholar
Kumar, S., Kumar, D., Maulik, O., Pradhan, A.K., Kumar, V., and Patnaik, A.: Synthesis and air jet erosion study of AlxFe1.5CrMnNi0.5 (x = 0.3, 0.5) high-entropy alloys. Metall. Mater. Trans. A, 49, 56075618 (2018).CrossRefGoogle Scholar
Kumar, D., Maulik, O., Kumar, S., Prasad, Y.V.S.S., and Kumar, V.: Phase and thermal study of equiatomic AlCuCrFeMnW high entropy alloy processed via spark plasma sintering. Mater. Chem. Phys. 210, 7177 (2017).CrossRefGoogle Scholar
Maulik, O. and Kumar, V.: Synthesis of AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) alloy powders by mechanical alloying. Mater. Charact. 110, 116125 (2015).CrossRefGoogle Scholar
Maulik, O., Kumar, D., Kumar, S., Fabijanic, D.M., and Kumar, V.: Structural evolution of spark plasma sintered AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) high entropy alloys. Intermetallics 77, 4656 (2016).CrossRefGoogle Scholar
Zhang, Y., Lu, Z.P., Ma, S.G., Liaw, P.K., Tang, Z., Cheng, Y.Q., and Gao, M.C.: Guidelines in predicting phase formation of high-entropy alloys. MRS Commun. 4, 5762 (2014).CrossRefGoogle Scholar
Qiao, J.W., Ma, S.G., Huang, E.W., Chuang, C.P., Liaw, P.K., and Zhang, Y.: Microstructural characteristics and mechanical behaviors of AlCoCrFeNi high-entropy alloys at ambient and cryogenic temperature. Mater. Sci. Forum 688, 419425 (2011).CrossRefGoogle Scholar
Wang, Z., Gao, M.C., Ma, S.G., Yang, H.J., Wang, Z.H., Moroz, M.Z., and Qiao, J.W.: Effect of cold rolling on the microstructure and mechanical properties of Al0.25CoCrFe1.25Ni1.25 High-entropy alloy. Mater. Sci. Eng., A 645, 163169 (2015).CrossRefGoogle Scholar
Chen, W., Fu, Z., Fang, S., Xiao, H., and Zhu, D.: Alloying behavior microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy. Mater. Des. 51, 854860 (2013).CrossRefGoogle Scholar
Fang, S., Chen, W., and Fu, Z.: Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering. Mater. Des. 54, 973979 (2014).CrossRefGoogle Scholar
Qin, G., Xue, W., Fan, C., Chen, R., Wang, L., Su, Y., Ding, H., and Guo, J.: Effect of Co content on phase formation and mechanical properties of (AlCoCrFeNi)100−xCox high-entropy alloys. Mater. Sci. Eng., A 710, 200205 (2018).CrossRefGoogle Scholar
Zhao, Y., Cui, H., Wang, M., Zhao, Y., Zhang, X., and Wang, C.: The microstructures and properties changes induced by Al:Co ratios of the AlxCrCo2−xFeNi high entropy alloys. Mater. Sci. Eng., A 733, 153163 (2018).CrossRefGoogle Scholar
Hsu, C.Y., Yeh, J.W., Chen, S.K., and Shun, T.T.: Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition. Metall. Mater. Trans. A 35, 14651469 (2004).CrossRefGoogle Scholar
Tong, C.J., Chen, M.R., Chen, S.K., Yeh, J.W., Shun, T.T., Lin, S.J., and Chang, S.Y.: Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 12631271 (2005).CrossRefGoogle Scholar
Chen, M.R., Lin, S.J., Yeh, J.W., Chen, S.K., Huang, Y.S., and Chuang, M.H.: Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy. Metall. Mater. Trans. A 37, 13631369 (2006).CrossRefGoogle Scholar
Duan, H., Wu, Y., Hua, M., Yuan, C., Wang, D., Tua, J., Kou, H., and Li, J.: Tribological properties of AlCoCrFeNiCu high-entropy alloy in hydrogen peroxide solution and in oil lubricant. Wear 297, 10451051 (2013).CrossRefGoogle Scholar
Yu, Y., Liu, W.M., Zhang, T.B., Li, J.S., Wang, J., Kou, H.C., and Li, J.: Microstructure and tribological properties of AlCoCrFeNiTi0.5 high-entropy alloy in hydrogen peroxide solution. Metall. Mater. Trans. A 45, 201207 (2014).CrossRefGoogle Scholar
Yu, Y., Wang, J., Li, J., Yang, J., Kou, H., and Liu, W.: Tribological behavior of AlCoCrFeNi(Ti0.5) high entropy alloys under oil and MACs lubrication. J. Mater. Sci. Technol. 32, 470476 (2016).CrossRefGoogle Scholar
Kao, Y.F., Chen, T.J., Chen, S.K., and Yeh, J.W.: Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. J. Alloys Compd. 488, 5764 (2009).CrossRefGoogle Scholar
Takeuchi, A. and Inoue, A.: Calculation of mixing enthalpy and mismatch entropy for ternary amorphous alloys. Mater. Trans., JIM 41, 13721378 (2000).CrossRefGoogle Scholar
Guo, S. and Liu, C.T.: Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci.: Mater. Int. 21, 433446 (2011).CrossRefGoogle Scholar
Dong, Y., Lu, Y., Jiang, L., Wang, T., and Li, T.: Effects of electro-negativity on the stability of topologically closepacked phase in high entropy alloys. Intermetallics 52, 105109 (2014).CrossRefGoogle Scholar
Baker, H.: ASM Handbook: Alloy phase diagrams, Volume 3 (ASM International, Materials Park, 1992).Google Scholar
Chen, Y., Li, Y., Kurosu, S., Yamanaka, K., Tang, N., and Chiba, A.: Effects of microstructures on the sliding behavior of hot-pressed CoCrMo alloys. Wear 319, 200210 (2014).CrossRefGoogle Scholar
Kukshal, V., Patnaik, A., and Bhat, I.K.: Effect of cobalt on microstructure and properties of AlCr1.5CuFeNi2Cox high entropy alloys. Mater. Res. Express 5, (2018). https://doi.org/10.1088/1757-899X/377/1/012023.CrossRefGoogle Scholar
Li, C., Li, J.C., Zhao, M., and Jiang, Q.: Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys. J. Alloys Compd. 475, 752757 (2009).CrossRefGoogle Scholar
Joseph, J., Jarvis, T., Wu, X., Stanford, N., Hodgson, P., and Fabijanic, D.M.: Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys. Mater. Sci. Eng., A 633, 184193 (2015).CrossRefGoogle Scholar
Sperka, P., Krupka, I., and Hartl, M.: The effect of surface grooves on film breakdowns in point contacts. Tribol. Int. 102, 249256 (2016).CrossRefGoogle Scholar
Wang, D.S. and Lin, J.F.: Effect of surface roughness on elastohydrodynamic lubrication of line contacts. Tribol. Int. 24, 5162 (1991).CrossRefGoogle Scholar
Hutchings, I.M.: Tribology: Friction and Wear of Engineering Materials (Elsevier, London, 1995).Google Scholar
Conceicao, L. and D’Oliveira, A.S.C.M.: The effect of oxidation on the tribolayer and sliding wear of a Co-based coating. Surf. Coat. Technol. 288, 6978 (2016).CrossRefGoogle Scholar
Mitrovic, S., Adamovic, D., Zivic, F., Dzunic, D., and Pantic, M.: Friction and wear behavior of shot peened surfaces of 36CrNiMo4 and 36NiCrMo16 alloyed steels under dry and lubricated contact conditions. Appl. Surf. Sci. 290, 223232 (2014).CrossRefGoogle Scholar
Murakami, T., Mano, H., Hibi, Y., and Sasaki, S.: Friction and wear properties of Fe7Mo6-based alloy in ethyl alcohol. Tribol. Int. 43, 21832189 (2010).CrossRefGoogle Scholar
Bhushan, B.: Modern Tribology Handbook (CRC Press, London, U.K., 2001); p. 455492.Google Scholar
Mannekote, J.K. and Kailas, S.V.: The effect of oxidation on the tribological performance of few vegetable oils. J. Mater. Res. Technol. 1, 9195 (2012).CrossRefGoogle Scholar
Nascimento, E.M., Amaral, L.M., and D’Oliveira, A.S.C.M.: Characterization and wear of oxides formed on CoCr MoSi alloy coatings. Surf. Coat. Technol. 332, 408413 (2017).CrossRefGoogle Scholar
Ma, L., Wang, L., Nie, Z., Wang, F., Xue, Y., Zhou, J., Cao, T., Wang, Y., and Ren, Y.: Reversible deformation-induced martensitic transformation in Al0.6CoCrFeNi high-entropy alloy investigated by in situ synchrotron based high-energy X-ray diffraction. Acta Mater. 128, 1221 (2017).CrossRefGoogle Scholar
ASTM E3-11: Standard Guide for Preparation of Metallographic Specimens, American Society for Testing and Materials (ASM Society, USA, 2011).Google Scholar
Supplementary material: File

Kumar et al. supplementary material

Kumar et al. supplementary material 1

Download Kumar et al. supplementary material(File)
File 2.5 MB