Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T09:26:06.919Z Has data issue: false hasContentIssue false

The roles of ammonia and ammonium bicarbonate in the preparation of nickel particles from nickel chloride

Published online by Cambridge University Press:  31 January 2011

B. Xia
Affiliation:
Department of Chemical Engineering, Hiroshima University, Higashi-Hiroshima, 739–8527, Japan
I. W. Lenggoro
Affiliation:
Department of Chemical Engineering, Hiroshima University, Higashi-Hiroshima, 739–8527, Japan
K. Okuyama
Affiliation:
Department of Chemical Engineering, Hiroshima University, Higashi-Hiroshima, 739–8527, Japan
Get access

Abstract

The roles of NH3 · H2O and NH4HCO3 in the preparation of Ni particles from NiCl2 · 6H2O aqueous solution by ultrasonic spray pyrolysis were investigated. The results showed that both ammonia and ammonium bicarbonate had a remarkable influence on the solution chemistry and the resulting particles, and could significantly modify the reaction pathway. After the addition of these additives to the precursor solution, intermediate NiO was formed initially, followed by reduction to metallic Ni in the presence of a reductive gas. H2 is a powerful reducing agent; however, metallic Ni could also be obtained in the absence of H2 in the carrier gas. In the latter case, it was shown that NH3 was primarily responsible for Ni formation. A description of the mechanisms and processes of Ni formation during spray pyrolysis is proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sheppard, L., Am. Ceram. Soc. Bull. 72, 45 (1993).Google Scholar
2. Chen, W., Li, L., Li, L., Qi, J., Wang, Y., and Gui, Z., J. Am. Ceram. Soc. 81, 2751 (1998).CrossRefGoogle Scholar
3. Yamamatsu, J., Fuel and Energy Abstracts 38, 181 (1997).Google Scholar
4. Sato, S., Nakano, Y., Sato, A., and Nomura, T., J. Eur. Ceram. Soc. 19, 1061 (1999).Google Scholar
5. Messing, G.L., Zhang, S.C., and Jayanthi, G.V., J. Am. Ceram. Soc. 76, 2707 (1993).Google Scholar
6. Lenggoro, I.W., Hata, H., Iskandar, F., Lunden, M.M., and Okuyama, K., J. Mater. Res. 15, 733 (2000).Google Scholar
7. Kang, Y.C., Park, S.B., Lenggoro, I.W., and Okuyama, K., J. Mater. Res. 14, 2611 (1999).CrossRefGoogle Scholar
8. Petrykin, V., Karpov, A., and Poltaver, V., Appl. Supercond. 5, 47 (1997).Google Scholar
9. Eroglu, S., Zhang, S.C., and Messing, G.L., J. Mater. Res. 11, 2131 (1996).Google Scholar
10. Che, S., Sakurai, O., Funakobo, H., Shinozaki, K., and Mizutani, N., J. Mater. Res. 12, 392 (1997).Google Scholar
11. Majumdar, D., Kodas, T.T., and Glicksman, H.D., Adv. Mater. 8, 1020 (1996).CrossRefGoogle Scholar
12. Nagashima, K., Wada, M., and Kato, A., J. Mater. Res. 5, 2828 (1990).Google Scholar
13. Nagashima, K., Himeda, T., and Kato, A., J. Mater. Sci. 26, 2477 (1991).CrossRefGoogle Scholar
14. Che, S.L., Takada, K., and Takashima, K., J. Mater. Sci. 34, 1313 (1999).Google Scholar
15. Stopic, S., Ilic, I., and Uskokovic, D.P., Int.J. Powder Metall. 32, 59 (1996).Google Scholar
16. Stopic, S., Nedeljkovic, J., Rakocevic, Z., and Uskokovic, D., J. Mater. Res. 14, 3059 (1999).CrossRefGoogle Scholar
17. Stopic, S., Ilic, I., Nedelijkovic, J., Rakocevic, Z., Susic, M., and Uskokovic, D., in Studies in Surface Science and Catalysis, edited by Li, C. and Xin, Q. (Elsevier Science, Amsterdam, The Netherlands, 1997), Vol.112, p. 103.Google Scholar
18. Cotton, F.A. and Wilkinson, G., in Advanced Inorganic Chemistry, 5th ed., edited by Cotton, F.A. and Wilkinson, G. (Wiley, New York, 1988), Chap. 18, pp. 743745.Google Scholar
19. Xia, B., Lenggoro, I.W., and Okuyama, K., Mater, J.. Sci. (in press).Google Scholar
20. Mayo, M.J., Int. Mater. Rev. 41, 85 (1996).CrossRefGoogle Scholar
21. Chase, M.W. Jr, Davies, C.A., Downey, J.R. Jr, Frurip, D.J., McDonald, R.A., and Syverud, A.N., in JANAF Thermochemical Tables, 3rd ed., edited by Lide, D.R. (American Chemical Society and the American Institute of Physics, New York, 1986).Google Scholar
22. Barin, I., in Thermochemical Data of Pure Substances, edited by Ebel, H.F. and Dyllick-Brenzinger, C. (VCH, Weinheim, Germany, 1989).Google Scholar
23. Merriam, J.S. and Atwood, K., Appl. Ind. Catal. 3, 113 (1984).Google Scholar
24. Gravelle, P.G. and Teichner, S.J., Adv. Catal. 20, 167 (1969).Google Scholar
25. Yu, H-F. and Gadalla, A.M., J. Mater. Res. 11, 663 (1996).Google Scholar
26. Kirk-Othmer, , in Encyclopedia of Chemical Technology, 2nd ed., edited by Kirk, R.E. and Othmer, F. (Wiley, New York, 1966), Vol.11, p. 369.Google Scholar
27. Parker, S.P., in McGraw-Hill Encyclopedia of Chemistry, 2nd ed. (McGraw-Hill, New York, 1993), p. 503.Google Scholar
28. Keely, W.M., J. Chem. Eng. Data 10, 186 (1965).CrossRefGoogle Scholar
29. Buciumana, F.C., Patcasa, F., and Hahn, T., Chem. Eng. Processing 38, 563 (1999).Google Scholar
30. Kohl, G. and Riesenfeld, F., in Gas Purification, 3rd ed., edited by Kohl, A.L. and Riesenfeld, F.C. (Gulf Publishing Co., Houston, TX, 1979), Chap. 12.Google Scholar
31. Chrysostomou, D., Flowers, J., and Zaera, F., Surf. Sci. 439, 34 (1999), p. 34.Google Scholar
32. Depner, H. and Jess, A., Fuel 78, 1369 (1999).CrossRefGoogle Scholar