Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T01:38:47.883Z Has data issue: false hasContentIssue false

Role of pO2 in microstructural development and properties of YBa2Cu3Ox superconductors

Published online by Cambridge University Press:  31 January 2011

J.P. Singh
Affiliation:
Materials and Components Technology Division, Argonne National Laboratory, Argonne, Illinois 60439
R.A. Guttschow
Affiliation:
Materials and Components Technology Division, Argonne National Laboratory, Argonne, Illinois 60439
J.T. Dusek
Affiliation:
Materials and Components Technology Division, Argonne National Laboratory, Argonne, Illinois 60439
R.B. Poeppel
Affiliation:
Materials and Components Technology Division, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

An evaluation of the effects of oxygen partial pressure (pO2) on sintering behavior and the resulting microstructure of YBa2Cu3Ox (YBCO) indicates that sintering kinetics are enhanced at reduced pO2. The density of specimens sintered at 910 °C increased from 79 to 94% theoretical when pO2 was decreased from 0.1 to 0.0001 MPa. It is believed that increase in density with decrease in pO2 is the result of enhanced sintering kinetics, due probably to increased defect concentration, decreased activation energy of the rate-controlling species, and possibly the presence of a small amount of liquid phase. Sintering at 910 °C resulted in a fine-grain microstructure, with an average grain size of ≍4 μm. Such a microstructure results in reduced microcracking. Consequently, strength as high as 191 MPa is achieved. Reduced microcracking may have important implications for developing microstructures with improved critical current density.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Shi, D., Capone, D. W., II, Goudey, G. T., Singh, J. P., Zaluzec, N. J., and Goretta, K. C., Mater. Lett. 6 (7), 217221 (1988).CrossRefGoogle Scholar
2.Kupperman, D. S., Singh, J. P., and Hitterman, R. L., “Effect of Grain Size on Strain in YBa2Cu3O7−x Using Neutron Diffraction,” J. Appl. Phys. (in review).Google Scholar
3.Singh, J. P., Leu, H. J., Poeppel, R. B., Van Voorhees, E., Goudey, G. T., Winsley, K., and Shi, Donglu, J. Appl. Phys. 66 (7), 31543159 (1989).CrossRefGoogle Scholar
4.Singh, J. P., Shi, D., and Capone, D. W., II, Appl. Phys. Lett. 53 (3), 237239 (1988).CrossRefGoogle Scholar
5.Nishio, T., Itoh, Y., Ogasawara, F., Suganuma, M., Yamada, Y., and Mizutani, U., J. Mater. Sci. 24, 32283233 (1989).CrossRefGoogle Scholar
6.Prasad, R., Soni, N. C., Mohan, A., Khera, S. K., Nair, K. U., Gupta, C. K., Tomi, C. V., and Malik, S. K., Mater. Lett. 7 (1–2), 912 (1988).CrossRefGoogle Scholar
7.Chen, Nan, Shi, Donglu, and Goretta, K. C., J. Appl. Phys. 66 (6), 24852488 (1989).CrossRefGoogle Scholar
8.Bormann, R. and Nölting, J., Appl. Phys. Lett. 54 (21), 21482150 (1989).CrossRefGoogle Scholar
9.Dell'Agli, G., Marino, O., Mascolo, G., Perinice, P., DiChiara, A., Pepc, G., and Di Uccio, U. Scotti, J. Mater. Sci.: Mater, in Elec. 1 (1), 2024 (1990).Google Scholar
10.Feenstra, R., Lindemer, T. B., Budai, J. D., and Galloway, M. D., “Effect of Oxygen Pressure on the Synthesis of YBa2Cu3O7−x Thin Films by Post Deposition Annealing,” J. Appl. Phys. (in press).Google Scholar
11.Balachandran, U., Poeppel, R. B., Emerson, J. E., Johnson, S. A., Lanagan, M. T., Youngdahl, C. A., Shi, Donglu, Goretta, K. C., and Eror, N. G., Mater. Lett. 8 (11,12), 454456 (1989).Google Scholar
12.Dorris, S. E., Dusek, J. T., Picciolo, J. J., Russel, R. A., Singh, J. P., and Poeppel, R. B., “YBa2Cu3O7−x Superconductor Coil: Processing and Properties,” Proc. Int. Conf. on Electrical Machines, Cambridge, MA, Aug. 1215, 1990.Google Scholar
13.Shaw, T. M., Shinde, S. L., Dimos, D., Cook, R. F., Duncombe, P. R., and Kroll, C., J. Mater. Res. 4, 248256 (1989).CrossRefGoogle Scholar
14. Nan Chen, Argonne National Laboratory, Argonne, IL, personal communication, 1991.Google Scholar
15.Richardson, T. J. and De Jonghe, L. C., J. Mater. Res. 5, 2066 (1990).Google Scholar
16.Evans, A. G. and Fu, Y., Advances in Ceramics, Vol 10: Structure and Properties of MgO and Al2O3 Ceramics, edited by Kingery, W. D. (Am. Ceram. Soc, Westerville, OH, 1984).Google Scholar
17.Alford, N. McN., Birchall, J. D., Clegg, W. G., Harmer, M. A., Kendall, K., and Jones, D. H., J. Mater. Sci. 23, 761 (1988).Google Scholar