Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T00:56:11.414Z Has data issue: false hasContentIssue false

The Role of Ni in the Formation of Low Resistance Ni–Ge–Au Ohmic Contacts to n+ GaAs Heterostructures

Published online by Cambridge University Press:  31 January 2011

Nancy E. Lumpkin
Affiliation:
Semiconductor Nanofabrication Facility, School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
Gregory R. Lumpkin
Affiliation:
Materials Division, Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai, New South Wales 2234, Australia
Mark G. Blackford
Affiliation:
Materials Division, Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai, New South Wales 2234, Australia
Get access

Abstract

Nickel is a commonly used wetting agent in alloyed Au–Ge ohmic contacts to n-GaAs, resulting in uniformity improvements to the morphology and contact resistance. In order to study the role of Ni in Ni–Ge–Au alloys, we have fabricated samples with varying Ni content and characterized them using electron microbeam techniques. Our data indicate the amount of Ni in the alloy affects the microstructure and composition, the morphology of the metal/GaAs interface, and the amount of GaAs consumed during the alloy reaction. Also, the dopant distribution into the GaAs is heterogeneous depending on the alloy microstructure.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Piotrowska, A., Electron. Technol. 24, 3 (1991).Google Scholar
2.Sharma, B. L., Semiconductors and Semimetals 15, 1 (1981).CrossRefGoogle Scholar
3.Rideout, V. L., Solid State Electron. 18, 541 (1975).CrossRefGoogle Scholar
4.Lumpkin, N. E., King, W. D., and Tansley, T. L., J. Mater. Res. 11, 1238 (1996).CrossRefGoogle Scholar
5.Lumpkin, N. E., Lumpkin, G. R., and Butcher, K. S. A., J. Mater. Res. 11, 1244 (1996).CrossRefGoogle Scholar
6.Grovenor, C. R. M., Properties of Gallium Arsenide (The Institution of Electrical Engineers, New York, 1986), p. 17.4.Google Scholar
7.Gunn, J. B., IBM J. Res. Develop. 8, 141 (1964).CrossRefGoogle Scholar
8.Hansen, M. and Andeko, K., Constitution of Binary Alloys (McGraw-Hill, New York, 1958), 206 pp.Google Scholar
9.Kim, T. and Chung, D. D. L., J. Vac. Sci. Technol. B 4, 762 (1986).CrossRefGoogle Scholar
10.Auvray, P., Guivarc'h, A., L'Haridon, H., and Mercier, J.P., Thin Solid Films 127, 39 (1985).CrossRefGoogle Scholar
11.Marlow, G. S., Das, M. B., and Tongson, L., Solid State Electron. 26, 259 (1983).CrossRefGoogle Scholar
12.Lakhani, A. A., Potter, R. C., and Beyea, D. M., Semicond. Sci. Technol. 3, 605 (1988).CrossRefGoogle Scholar
13.Braslau, N., Gunn, J. B., and Staples, J. L., Solid State Electron. 10, 381 (1967).CrossRefGoogle Scholar
14.Staples, J. L., U.S. Patent 3,386,867 (1968).Google Scholar
15.Gunn, J. B., IEEE Trans. Electron. Dev. 23, 705 (1976).CrossRefGoogle Scholar
16.Grovenor, C. R. M., Properties of Gallium Arsenide, 2nd ed. (Inspec EMIS Datareviews Series no. 2, 1989), 403 pp.Google Scholar
17.Piotrowska, A. and Kaminska, E., Thin Solid Films 193/194, 511 (1990).CrossRefGoogle Scholar
18.Robinson, Y., Solid State Electron. 18, 331 (1976).CrossRefGoogle Scholar
19.Wittemer, M., Pretorius, R., Mayer, J.W., and Nicolet, M-A., Solid State Electron. 20, 433 (1977).CrossRefGoogle Scholar
20.Weiss, L. and Hartnagel, H. L., Electron. Lett. 11, 263 (1975).CrossRefGoogle Scholar
21.Harris, J. S., Nannichi, Y., Pearson, G. L., and Davis, G. F., J. Appl. Phys. 40, 4575 (1969).CrossRefGoogle Scholar
22.Andrews, M. and Holonyak, N., Solid State Electron. 15, 601 (1972).CrossRefGoogle Scholar
23.Otsubo, M., Kumabe, H., and Miki, H., Solid State Electron. 20, 617 (1977).CrossRefGoogle Scholar
24.Anderson, W. T., Christou, A., and Davey, J., IEEE J. Solid State Circ. SC-13, 4, 430 (1978).CrossRefGoogle Scholar
25.Braslau, N., J. Vac. Sci. Technol. 19 (3), 803 (1981).CrossRefGoogle Scholar
26.Patrick, W., Mackie, W. S., Beaumont, S. P., and Wilkenson, C. D. W., Appl. Phys. Lett. 48, 986 (1986).CrossRefGoogle Scholar
27.Sigurd, D., Ottaviani, G., Marrello, V., Mayer, J. W., and McCaldin, J. O., J. Non-Cryst. Solids 12, 135 (1975).CrossRefGoogle Scholar
28.Yoder, M. N., Solid State Electron. 23, 117 (1980).CrossRefGoogle Scholar
29.O'Connor, P., Dori, A., Feuer, M., and Vounckx, R., IEEE Trans. Electron. Dev. 34, 765 (1987).CrossRefGoogle Scholar
30.Kuan, T. S., Batson, P. E., Jackson, T. N., Rupprecht, H., and Wilkie, E. L., J. Appl. Phys. 54, 6952 (1983).CrossRefGoogle Scholar
31.Shen, T. C., Gao, G. B., and Morkoc, H., J. Vac. Sci. Technol. B 10 (5), 2113 (1992).CrossRefGoogle Scholar
32.Williams, R. E., Gallium Arsenide Processing Techniques (Artech House, Inc., Dedham, MA, 1984), 406 pp.Google Scholar
33.Grovenor, C. R. M., Thin Solid Films (Switzerland) 104, 409 (1983).CrossRefGoogle Scholar