Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T06:25:18.693Z Has data issue: false hasContentIssue false

Role of minor addition of metallic alloying elements in formation and properties of Cu–Ti-rich bulk metallic glasses

Published online by Cambridge University Press:  31 January 2011

E.S. Park*
Affiliation:
Center for Noncrystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120-749, Korea
H.J. Chang
Affiliation:
Center for Noncrystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120-749, Korea
J.S. Kyeong
Affiliation:
Center for Noncrystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120-749, Korea
D.H. Kim
Affiliation:
Center for Noncrystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120-749, Korea
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The effect of minor addition (MA) of metallic alloying elements in Cu–Ti-rich Cu–Ti–Zr–Ni–Si bulk metallic glasses (BMGs) has been investigated. MA of elements having a relatively small positive enthalpy of mixing (partial substitution of Zr with Nb) leads to enhancement of compressive plasticity (up to about 5% of fracture strain) when the addition leads to improvement in glass-forming ability (GFA). If the GFA is reduced (partial substitution of Ni with Ag or Co), the plasticity is also reduced. On the one hand, the MA of elements having a relatively large positive enthalpy of mixing (partial substitution of Zr with Y) can lead to the liquid-state phase separation in Cu–Ti–Zr–Ni–Si(–Sn) BMGs, although the addition can lead to drastic deterioration in GFA and plasticity. This concept would be considered to be effective even in design of other BMG systems with tailored properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Greer, A.L.Ma, E.: Bulk metallic glasses: At the cutting edge of metals research. MRS Bull. 32, 611 2007CrossRefGoogle Scholar
2Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 2000CrossRefGoogle Scholar
3Wang, W.H.: Role of minor additions in formation and properties of bulk metallic glasses. Prog. Mater. Sci. 52, 540 2007CrossRefGoogle Scholar
4Miracle, D.B.: A structural model for metallic glasses. Nat. Mater. 3, 697 2004CrossRefGoogle ScholarPubMed
5Ma, H., Shi, L.L., Xu, J., Li, Y.Ma, E.: Discovering inch-diameter metallic glasses in three-dimensional composition space. Appl. Phys. Lett. 87, 181915 2005CrossRefGoogle Scholar
6Kim, J.H., Park, J.S., Park, E.S., Kim, W.T.Kim, D.H.: Estimation of critical cooling rates for glass formation in bulk metallic glasses through non-isothermal thermal analysis. Met. Mater. Int. 11, 1 2005CrossRefGoogle Scholar
7Johnson, W.L.Samwer, K.: A universal criterion for plastic yielding of metallic glasses with a (T/T g)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 2005CrossRefGoogle Scholar
8Park, E.S., Na, J.H.Kim, D.H.: Correlation between fragility and glass-forming ability/plasticity in metallic glass-forming alloys. Appl. Phys. Lett. 91, 031907 2007CrossRefGoogle Scholar
9Choi-Yim, H., Busch, R.Johnson, W.L.: The effect of silicon on the glass forming ability of the Cu47Ti34Zr11Ni8 bulk metallic glass forming alloy during processing of composites. J. Appl. Phys. 83, 7993 1998CrossRefGoogle Scholar
10Calin, M., Eckert, J.Schultz, L.: Improved mechanical behavior of Cu–Ti–based bulk metallic glass by in situ formation of nanoscale precipitates. Scr. Mater. 48, 653 2003CrossRefGoogle Scholar
11Park, E.S., Lim, H.K., Kim, W.T.Kim, D.H.: The effect of Sn addition on the glass-forming ability of Cu–Ti–Zr–Ni–Si metallic glass alloys. J. Non-Cryst. Solids 298, 15 2002CrossRefGoogle Scholar
12Park, E.S., Kim, W.T.Kim, D.H.: The effect of In addition on the glass-forming ability of Cu–Ti–Zr–Ni–Si metallic glasses. Mater. Trans. 45, 2693 2004CrossRefGoogle Scholar
13Park, E.S., Kim, D.H., Ohkubo, T.Hono, K.: Enhancement of glass forming ability and plasticity by addition of Nb in Cu–Ti–Zr–Ni–Si bulk metallic glasses. J. Non-Cryst. Solids 351, 1232 2005CrossRefGoogle Scholar
14Liu, B.Liu, L.: The effect of microalloying on thermal stability and corrosion resistance of Cu-based bulk metallic glasses. Mater. Sci. Eng., A 415, 286 2006CrossRefGoogle Scholar
15Ma, C.L., Soejima, H., Ishihara, S., Amiya, K., Nishiyama, N.Inoue, A.: New Ti-based bulk glassy alloys with high glass-forming ability and superior mechanical properties. Mater. Trans. 45, 3223 2004CrossRefGoogle Scholar
16Venkataraman, S., Stoica, M., Scudino, S., Gemming, T., Mickel, C., Kunz, U., Kim, K.B., Schultz, L.Eckert, J.: Revisiting the Cu47Ti33Zr11Ni8Si1 glass-forming alloy. Scr. Mater. 54, 835 2006CrossRefGoogle Scholar
17Park, E.S.Kim, D.H.: Design of bulk metallic glasses with high glass forming ability and enhancement of plasticity in metallic glass matrix composites: A review. Met. Mater. Int. 11, 19 2005CrossRefGoogle Scholar
18Miedema, A.R.: The heat of formation of alloys. Philips Tech. Rev. 36, 217 1976Google Scholar
19Xing, L-Q., Li, Y., Ramesh, K.T., Li, J.Hufnagel, T.C.: Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys. Rev. B 64, 180201R 2001CrossRefGoogle Scholar
20Lee, M.H., Lee, J.Y., Bae, D.H., Kim, W.T., Sordelet, D.J.Kim, D.H.: A development of Ni-based alloys with enhanced plasticity. Intermetallics 12, 1133 2004CrossRefGoogle Scholar
21Sung, D.S., Kwon, O.J., Fleury, E., Kim, K.B., Lee, J.C., Kim, D.H.Kim, Y.C.: Enhancement of the glass forming ability of Cu–Zr–Al alloys by Ag addition. Met. Mater. Int. 10, 575 2004CrossRefGoogle Scholar
22Park, E.S., Lee, J.Y.Kim, D.H.: Effect of Ag addition on the improvement of glass-forming ability and plasticity of Mg–Cu–Gd bulk metallic glass. J. Mater. Res. 20, 2379 2005CrossRefGoogle Scholar
23Park, E.S., Chang, H.J., Kim, D.H., Ohkubo, T.Hono, K.: Effect of the substitution of Ag and Ni for Cu on the glass forming ability and plasticity of Cu60Zr30Ti10 alloy. Scr. Mater. 54, 1569 2006CrossRefGoogle Scholar
24Park, E.S.Kim, D.H.: Phase separation and enhancement of plasticity in Cu–Zr–Al–Y bulk metallic glasses. Acta Mater. 54, 2597 2006CrossRefGoogle Scholar
25Dieter, E.G.: Mechanical Metallurgy 3rd ed.McGraw-Hill Book Company New York 1986Google Scholar
26Zhang, Z.F., Eckert, J.Schultz, L.: Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51, 1167 2003CrossRefGoogle Scholar
27Conner, R.D., Choi-Yim, H.Johnson, W.L.: Mechanical properties of Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix particulate composites. J. Mater. Res. 14, 3292 1999CrossRefGoogle Scholar
28Subhash, G., Dowding, J.R.Kecskes, L.J.: Characterization of uniaxial compressive response of bulk amorphous Zr–Ti– Cu–Ni–Be alloy. Mater. Sci. Eng., A 334, 33 2002CrossRefGoogle Scholar
29Kündig, A.A., Ohnuma, M., Ping, D.H., Ohkubo, T.Hono, K.: In-situ formed two-phase metallic glass with surface fractal microstructure. Acta Mater. 52, 2441 2004CrossRefGoogle Scholar
30Park, B.J., Chang, H.J., Kim, W.T.Kim, D.H.: In situ formation of two amorphous phases by liquid phase separation in Y–Ti–Al–Co alloy. Appl. Phys. Lett. 85, 6353 2004CrossRefGoogle Scholar
31Mattern, N., Kühn, U., Gebert, A., Gemming, T., Zinkevich, M., Wendrock, H.Schultz, L.: Microstructure and thermal behavior of two-phase amorphous Ni–Nb–Y alloy. Scr. Mater 53, 271 2005CrossRefGoogle Scholar
32Oh, J.C., Ohkubo, T., Kim, Y.C., Eleury, E.Hono, K.: Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass. Scr. Mater. 53, 165 2005CrossRefGoogle Scholar
33Park, B.J., Chang, H.J., Kim, D.H., Kim, W.T., Chattopadhyay, K., Abinandanan, T.A.Bhattacharyya, S.: Phase separating bulk metallic glass: A hierarchical composite. Phys. Rev. Lett. 96, 245503 2006CrossRefGoogle Scholar
34Park, E.S., Jeong, E.Y., Lee, J-K., Bea, J.C., Kwon, A.R., Gebert, A., Schultz, L., Chang, H.J.Kim, D.H.: In situ formation of two glassy phases in the Nd–Zr–Al–Co alloy system. Scr. Mater. 56, 197 2007CrossRefGoogle Scholar
35Park, E.S., Kyeong, J.S.Kim, D.H.: Phase separation and improved plasticity by modulated heterogeneity in Cu–(Zr, Hf)– (Gd,Y)–Al metallic glasses. Scr. Mater. 57, 49 2007CrossRefGoogle Scholar
36Park, E.S., Chang, H.J., Lee, J.Y.Kim, D.H.: Improvement of plasticity by tailoring combination of constituent elements in Ti-rich Ti–Zr–Be–Cu–Ni bulk metallic glasses. J. Mater. Res. 22, 3440 2007CrossRefGoogle Scholar
37Gu, X.J., Poon, S.J.Shiflet, G.J.: Mechanical properties of iron-based bulk metallic glasses. J. Mater. Res. 22, 344 2007CrossRefGoogle Scholar