Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-30T19:06:10.607Z Has data issue: false hasContentIssue false

Role of boundaries on low-field magnetotransport properties of La0.7Sr0.3MnO3-based nanocomposite thin films

Published online by Cambridge University Press:  10 May 2013

Aiping Chen
Affiliation:
Department of Electrical and Computer Engineering, Texas A & M University, College Station, Texas 77843
Wenrui Zhang
Affiliation:
Department of Electrical and Computer Engineering, Texas A & M University, College Station, Texas 77843
Jie Jian
Affiliation:
Department of Electrical and Computer Engineering, Texas A & M University, College Station, Texas 77843
Haiyan Wang*
Affiliation:
Department of Electrical and Computer Engineering, Texas A & M University, College Station, Texas 77843
Chen-Fong Tsai
Affiliation:
Materials Science and Engineering Program, Texas A & M University, College Station, Texas 77843
Qing Su
Affiliation:
Materials Science and Engineering Program, Texas A & M University, College Station, Texas 77843
Quanxi Jia
Affiliation:
Center for Integrated Nanotechnologies (CINT), Division of Materials Physics and Applications, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Judith L. MacManus-Driscoll
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB2 3QZ, United Kingdom
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The effects of boundaries such as grain boundaries and phase boundaries on low-field magnetoresistance (LFMR) have been investigated in single-phase lanthanum strontium manganates, in this case La0.7Sr0.3MnO3 (LSMO) and LSMO: zinc oxide (ZnO) nanocomposite thin films. In the pure LSMO films with similar grain size, it is found that the LFMR increases as the grain misorientation factor (β) increases. The LFMR in the nanocomposite films is greatly enhanced, as compared with single-phase films, due to the reduced grain size, and increased phase boundary (PB) and β effects. The composition study shows that the LFMR can be dramatically enhanced when the secondary phase content approaches the percolation threshold. The increased β and secondary phase concentration reduce the cross-section of electron conduction paths and favor the formation of the quasi-one-dimensional transport channels. Our results demonstrate that the reduction of cross-section of the electron conduction paths by tuning the grain orientation and secondary phase composition is necessary for enhancing LFMR effect.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Buban, J.P., Matsunaga, K., Chen, J., Shibata, N., Ching, W.Y., Yamamoto, T., and Ikuhara, Y.: Grain boundary strengthening in alumina by rare earth impurities. Science 311, 212 (2006).CrossRefGoogle ScholarPubMed
Hsu, H.S., Huang, J.C.A., Chen, S.F., and Liu, C.P.: Role of grain boundary and grain defects on ferromagnetism in Co:ZnO films. Appl. Phys. Lett. 90, 102506 (2007).CrossRefGoogle Scholar
Hwang, H.Y., Cheong, S.W., Ong, N.P., and Batlogg, B.: Spin-polarized intergrain tunneling in La2/3Sr1/3MnO3. Phys. Rev. Lett. 77, 2041 (1996).CrossRefGoogle ScholarPubMed
Li, X.W., Gupta, A., Xiao, G., and Gong, G.Q.: Low-field magnetoresistive properties of polycrystalline and epitaxial perovskite manganite films. Appl. Phys. Lett. 71, 1124 (1997).CrossRefGoogle Scholar
Kang, B.S., Wang, H., MacManus-Driscoll, J.L., Li, Y., Jia, Q.X., Mihut, I., and Betts, J.B.: Low field magnetotransport properties of (La0.7Sr0.3MnO3)0.5:(ZnO)0.5 nanocomposite films. Appl. Phys. Lett. 88, 3 (2006).CrossRefGoogle Scholar
Staruch, M., Hires, D., Chen, A.P., Bi, Z., Wang, H., and Jain, M.: Enhanced low-field magnetoresistance in La0.67Sr0.33MnO3:MgO composite films. J. Appl. Phys. 110, 113913 (2011).CrossRefGoogle Scholar
Gupta, A., Gong, G.Q., Xiao, G., Duncombe, P.R., Lecoeur, P., Trouilloud, P., Wang, Y.Y., Dravid, V.P., and Sun, J.Z.: Grain-boundary effects on the magnetoresistance properties of perovskite manganite films. Phys. Rev. B 54, 15629 (1996).CrossRefGoogle ScholarPubMed
Rivas, J., Hueso, L.E., Fondado, A., Rivadulla, F., and Lopez-Quintela, M.A.: Low field magnetoresistance effects in fine particles of La0.67Ca0.33MnO3 perovskites. J. Magn. Magn. Mater. 221, 57 (2000).CrossRefGoogle Scholar
Chen, A.P., Bi, Z.X., Tsai, C.F., Chen, L., Su, Q., Zhang, X.H., and Wang, H.Y.: Tilted aligned epitaxial La0.7Sr0.3MnO3 nanocolumnar films with enhanced low-field magnetoresistance by pulsed laser oblique-angle deposition. Cryst. Growth Des. 11, 5405 (2011).CrossRefGoogle Scholar
Ziese, M.: Grain-boundary magnetoresistance in manganites: Spin-polarized inelastic tunneling through a spin-glass-like barrier. Phys. Rev. B 60, R738 (1999).CrossRefGoogle Scholar
Yang, H., Cao, Z.E., Shen, X., Xian, T., Feng, W.J., Jiang, J.L., Feng, Y.C., Wei, Z.Q., and Dai, J.F.: Fabrication of 0-3 type manganite/insulator composites and manipulation of their magnetotransport properties. J. Appl. Phys. 106, 104317 (2009).CrossRefGoogle Scholar
Yan, L., Kong, L.B., Yang, T., Goh, W.C., Tan, C.Y., Ong, C.K., Rahman, M.A., Osipowicz, T., and Ren, M.Q.: Enhanced low field magnetoresistance of Al2O3-La0.7Sr0.3MnO3 composite thin films via a pulsed laser deposition. J. Appl. Phys. 96, 1568 (2004).CrossRefGoogle Scholar
Miao, J.H., Yuan, L., Wang, Y.Q., Shang, J.L., Yu, G.Q., Ren, G.M., Xiao, X., and Yuan, S.L.: Electrical transport and magnetoresistance in La2/3Ca1/3MnO3/CuO composites. Mater. Lett. 60, 2214 (2006).CrossRefGoogle Scholar
Eshraghi, M., Salamati, H., and Kameli, P.: The effect of NiO doping on the structure, magnetic and magnetotransport properties of La0.8Sr0.2MnO3 composite. J. Alloys Compd. 437, 22 (2007).CrossRefGoogle Scholar
Gao, L., Bai, L.F., Li, C.S., Liu, X.H., Wu, Z.W., Zheng, D.N., and Lu, Y.F.: Electrical transport and magnetoresistance in La2/3Ca1/3MnO3/BaZrO3 composites. J. Alloys Compd. 522, 25 (2012).CrossRefGoogle Scholar
Chen, F.Y., Wu, Y.Y., Xiong, Y.H., Li, L.J., Liu, Z.L., and Xiong, C.S.: Electrical properties and enhanced room temperature magnetoresistance in La0.7Ca0.2Sr0.1MnO3/Pd composites prepared by chemical plating. J. Magn. Magn. Mater. 324, 3286 (2012).CrossRefGoogle Scholar
Lin, Y.B., Huang, Z.G., Yang, Y.M., Wang, S., Li, S.D., Zhang, F.M., and Du, Y.W.: Giant positive magnetoresistance in heterostructure (La0.7Sr0.3MnO3) coated with YBa2Cu3O7 composites. Appl. Phys. A 104, 143 (2011).CrossRefGoogle Scholar
Kang, Y.M., Kim, H.J., and Yoo, S.I.: Excellent low field magnetoresistance properties of the La0.7Sr0.3Mn1+dO3-manganese oxide composites. Appl. Phys. Lett. 95, 052510 (2009).CrossRefGoogle Scholar
Lu, W.J., Sun, Y.P., Zhu, X.B., Song, W.H., and Du, J.J.: Low-field magnetoresistance in La0.8Sr0.2MnO3/ZrO2 composite system. Mater. Lett. 60, 3207 (2006).CrossRefGoogle Scholar
Kim, H.J. and Yoo, S.I.: Enhanced low field magnetoresistance in La0.7Sr0.3MnO3-La2O3 composites. J. Alloys Compd. 521, 30 (2012).CrossRefGoogle Scholar
Zi, Z.F., Fu, Y.K., Liu, Q.C., Dai, J.M., and Sun, Y.P.: Enhanced low-field magnetoresistance in LSMO/SFO composite system. J. Magn. Magn. Mater. 324, 1117 (2012).CrossRefGoogle Scholar
Chen, A.P., Bi, Z.X., Hazariwala, H., Zhang, X.H., Su, Q., Chen, L., Jia, Q.X., MacManus-Driscoll, J.L., and Wang, H.Y.: Microstructure, magnetic, and low-field magnetotransport properties of self-assembled (La0.7Sr0.3MnO3)0.5:(CeO2)0.5 vertically aligned nanocomposite thin films. Nanotechnology 22, 315712 (2011).CrossRefGoogle ScholarPubMed
Bhame, S.D., Fagnard, J.F., Pekala, M., Vanderbemden, P., and Vertruyen, B.: La0.7Ca0.3MnO3/Mn3O4 composites: Does an insulating secondary phase always enhance the low field magnetoresistance of manganites? J. Appl. Phys. 111, 063905 (2012).CrossRefGoogle Scholar
Wang, X.L., Dou, S.X., Liu, H.K., Ionescu, M., and Zeimetz, B.: Large low-field magnetoresistance over a wide temperature range induced by weak-link grain boundaries in La0.7Ca0.3MnO3. Appl. Phys. Lett. 73, 396 (1998).CrossRefGoogle Scholar
Chen, A.P., Zhang, W., Khatkatay, F., Su, Q., Tsai, C-F., Chen, L., Jia, Q.X., MacManus Driscoll, J.L., and Wang, H.: Magnetotransport properties of quasi-one-dimensionally channeled vertically aligned heteroepitaxial nanomazes. Appl. Phys. Lett. 102, 093114 (2013).CrossRefGoogle Scholar
Bi, Z.X., Weal, E., Luo, H.M., Chen, A.P., MacManus-Driscoll, J.L., Jia, Q.X., and Wang, H.Y.: Microstructural and magnetic properties of (La0.7Sr0.3MnO3)0.7:(Mn3O4)0.3 nanocomposite thin films. J. Appl. Phys. 109, 054302 (2011).CrossRefGoogle Scholar
Chen, A.P., Bi, Z.X., Tsai, C.F., Lee, J., Su, Q., Zhang, X.H., Jia, Q.X., MacManus-Driscoll, J.L., and Wang, H.Y.: Tunable low-field magnetoresistance in (La0.7Sr0.3MnO3)0.5:(ZnO)0.5 self-assembled vertically aligned nanocomposite thin films. Adv. Funct. Mater. 21, 2423 (2011).CrossRefGoogle Scholar
Chen, A.P., Bi, Z.X., Jia, Q.X., MacManus-Driscoll, J.L., and Wang, H.Y.: Microstructure, vertical strain control and tunable functionalities in self-assembled, vertically aligned nanocomposite thin films. Acta Mater. 61, 2783 (2013).CrossRefGoogle Scholar
Yang, Y.F., Long, H., Yang, G., Chen, A.P., Zheng, Q.G., and Lu, P.X.: Femtosecond laser deposited zinc oxide film and its optical properties. Vacuum 83, 892 (2009).CrossRefGoogle Scholar