Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T00:57:42.948Z Has data issue: false hasContentIssue false

Role of Ag additions in the microstructural development, strain tolerance, and critical current density of Ag-sheathed BSCCO superconducting tapes

Published online by Cambridge University Press:  03 March 2011

J.P. Singh
Affiliation:
Materials and Components Technology Division, Argonne National Laboratory, Argonne, Illinois 60439
J. Joo
Affiliation:
Materials and Components Technology Division, Argonne National Laboratory, Argonne, Illinois 60439
N. Vasanthamohan
Affiliation:
Materials and Components Technology Division, Argonne National Laboratory, Argonne, Illinois 60439
R.B. Poeppel
Affiliation:
Materials and Components Technology Division, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

Ag-sheathed tapes of Bi–Sr–Ca–Cu–O (BSCCO) and BSCCO–Ag superconducting cores were made by a powder-in-tube technique and subjected to repeated cycles of pressing and heat treatments. These thermomechanical treatments resulted in enhanced texturing and grain growth that improved the critical current density (Jc). Additions of Ag to the BSCCO core further increased texturing and brought an additional improvement in Jc. Strain tolerance of the tapes was evaluated by measuring Jc before and after application of a predetermined level of tensile strain in a uniaxial mode. The fraction of Jc retained after the strain application was higher in the BSCCO–Ag composite tapes than in the monolithic BSCCO. For a 1.2% applied strain, 90% of the initial Jc was retained in the BSCCO–Ag composite tape, compared to only 40% in the monolithic BSCCO tapes. The higher strain tolerance of the BSCCO–Ag tapes may be related to improved mechanical properties (strength, flexibility, and fracture toughness) and grain connectivity due to Ag addition.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Alford, N. McN., Button, T. W., and Birchall, J. D., Supercon. Sci. Technol. 3, 1 (1990).Google Scholar
2Heine, K., Tenbrink, J., and Thoner, M., Appl. Phys. Lett. 55, 2441 (1989).Google Scholar
3Hakata, T., Sato, K., and Hitotsuyanagi, H., Jpn. J. Appl. Phys. 28, L82 (1989).Google Scholar
4Dou, S. X., Liu, H. K., Apperley, M. H., Song, K. H., and Song, C. C., Supercon. Sci. Technol. 3, 138 (1990).Google Scholar
5Flükiger, R., Graf, T., Decroux, M., Groth, C., and Yamada, Y., IEEE Trans. Magn. 27, 1258 (1991).Google Scholar
6Osamura, K., Oh, S. S., and Ochiai, S., Supercon. Sci. Technol. 3, 143 (1990).CrossRefGoogle Scholar
7Uno, N., Enomoto, N., Kikuchi, H., Matsumoto, K., Mimura, M., and Nakajima, M., Adv. in Superconductivity, Proc. 2nd Int. Symp. on Superconductivity (1991).Google Scholar
8Ueyama, M., Hakita, T., Kato, T., and Sato, K., Jpn. J. Appl. Phys. 30, L1384 (1991).CrossRefGoogle Scholar
9Miller, T.A., Ostenson, J. E., Li, Q., Schwartzkopf, L. A., Finnemore, D.K., Righi, J., Gleixner, R. A., and Zeigler, D., Appl. Phys. Lett. 58 (19), 2159 (1991).CrossRefGoogle Scholar
10Li, Q., Ostenson, J. E., and Finnemore, D. K., J. Appl. Phys. 70 (8), 4392 (1991).CrossRefGoogle Scholar
11Sato, K., Hikata, T., Mukai, H., Ueyama, M., Shibuta, N., Kato, T., Masuda, T., Nagata, M., Iwata, K., and Mitsui, T., IEEE Trans. Magn. 27 (2), 1231 (1991).Google Scholar
12Ekin, J. W., Finnemore, D. K., Li, Q., Tenbrink, J., and Carter, W., Appl. Phys. Lett. 61, 7, 17 (1992).CrossRefGoogle Scholar
13Flukiger, R., Graf, T., Decroux, M., Groth, C., and Yamada, Y., IEEE Trans. Magn. 27, 1258 (1991).Google Scholar
14Yamada, Y., Obst, B., and Flukiger, R., Supercon. Sci. Technol. 4, 165 (1991).Google Scholar
15Wu, C. T., Goretta, K. C., Shi, D., Lanagan, M. T., and Poeppel, R. B., Proc. Symp. High-rc Superconducting Compounds III, Annual Meeting of The Metallurgical Society, New Orleans (February 1991).Google Scholar
16Joo, J., Singh, J. P., and Poeppel, R. B., Supercond. Sci. Technol. (in press).Google Scholar
17Joo, J., Singh, J. P., and Poeppel, R. B., in High Tc Superconductors, edited by Bongers, P. F., Schlenker, C., and Stritzker, B. (Mater. Res. Soc. Conf. Proc. E-6, Pittsburgh, PA, 1989).Google Scholar
18Joo, J., Grow, A., T. Warzynski, Singh, J. P., and Poeppel, R. B., unpublished.Google Scholar
19Singh, J. P., Joo, J., Singh, D., Warzynski, T., and Poeppel, R. B., J. Mater. Res. 8, 1226 (1993).Google Scholar