Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-04T00:15:40.724Z Has data issue: false hasContentIssue false

A review on cyclic deformation damage and fatigue fracture behavior of metallic nanolayered composites

Published online by Cambridge University Press:  04 March 2019

Guang-Ping Zhang*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Fei Liang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China; and School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People’s Republic of China
Xue-Mei Luo
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Xiao-Fei Zhu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Fatigue performance of metallic nanolayered composites (NLCs) has been gaining more and more attention due to the rapid development in the field of both micro-electro-mechanical systems and high-performance engineering structure materials and the increasing demand for long-term fatigue reliability. Metallic NLCs have exhibited different damage behaviors due to the effect of high-density heterogeneous interface compared with bulk materials and thin metal films. In this review paper, the cyclic deformation damage behavior, fatigue cracking feature, and fatigue properties of some metallic NLCs are reviewed. Effects of length scales, including layer thickness and grain size, on fatigue damage behaviors of the NLCs are revealed, and the transition of the fatigue cracking behavior and the corresponding damage mechanism are discussed. Then, the fatigue properties of some typical metallic NLCs are presented and compared with that of bulk materials and metal thin films. The effect of interface type and grain boundary alignment is also discussed to correlate with fatigue cracking resistance of the NLCs. Finally, some prospective research topics on fatigue performance of metallic NLCs are addressed.

Type
Invited Feature Paper - REVIEW
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper has been selected as an Invited Feature Paper.

References

Seok, M-Y., Lee, J-A., Lee, D-H., Ramamurty, U., Nambu, S., Koseki, T., and Jang, J-i.: Decoupling the contributions of constituent layers to the strength and ductility of a multi-layered steel. Acta Mater. 121, 164 (2016).CrossRefGoogle Scholar
Kümmel, F., Hausöl, T., Höppel, H.W., and Göken, M.: Enhanced fatigue lives in AA1050A/AA5005 laminated metal composites produced by accumulative roll bonding. Acta Mater. 120, 150 (2016).CrossRefGoogle Scholar
Liu, H.S., Zhang, B., and Zhang, G.P.: Enhanced toughness and fatigue strength of cold roll bonded Cu/Cu laminated composites with mechanical contrast. Scr. Mater. 65, 891 (2011).CrossRefGoogle Scholar
Liu, B.X., Huang, L.J., Geng, L., Kaveendran, B., Wang, B., Song, X.Q., and Cui, X.P.: Gradient grain distribution and enhanced properties of novel laminated Ti–TiBw/Ti composites by reaction hot-pressing. Mater. Sci. Eng., A 595, 257 (2014).CrossRefGoogle Scholar
Huang, C.X., Wang, Y.F., Ma, X.L., Yin, S., Höppel, H.W., Göken, M., Wu, X.L., Gao, H.J., and Zhu, Y.T.: Interface affected zone for optimal strength and ductility in heterogeneous laminate. Mater. Today 21, 713719 (2018).CrossRefGoogle Scholar
Huang, M., Xu, C., Fan, G.H., Maawad, E., Gan, W.M., Geng, L., Lin, F.X., Tang, G.Z., Wu, H., Du, Y., Li, D.Y., Miao, K.S., Zhang, T.T., Yang, X.S., Xia, Y.P., Cao, G.J., Kang, H.J., Wang, T.M., Xiao, T.Q., and Xie, H.L.: Role of layered structure in ductility improvement of layered Ti–Al metal composite. Acta Mater. 153, 235 (2018).CrossRefGoogle Scholar
Bian, X., Yuan, F., Wu, X., and Zhu, Y.: The evolution of strain gradient and anisotropy in gradient-structured metal. Metall. Mater. Trans. A 48, 3951 (2017).CrossRefGoogle Scholar
Radchenko, I., Anwarali, H.P., Tippabhotla, S.K., and Budiman, A.S.: Effects of interface shear strength during failure of semicoherent metal–metal nanolaminates: An example of accumulative roll-bonded Cu/Nb. Acta Mater. 156, 125 (2018).CrossRefGoogle Scholar
Anwar Ali, H.P., Radchenko, I., Li, N., and Budiman, A.: The roles of interfaces and other microstructural features in Cu/Nb nanolayers as revealed by in situ beam bending experiments inside an scanning electron microscope (SEM). Mater. Sci. Eng., A 738, 253 (2018).CrossRefGoogle Scholar
Ma, X., Huang, C., Moering, J., Ruppert, M., Höppel, H.W., Göken, M., Narayan, J., and Zhu, Y.: Mechanical properties of copper/bronze laminates: Role of interfaces. Acta Mater. 116, 43 (2016).CrossRefGoogle Scholar
Nambu, S., Michiuchi, M., Inoue, J., and Koseki, T.: Effect of interfacial bonding strength on tensile ductility of multilayered steel composites. Compos. Sci. Technol. 69, 1936 (2009).CrossRefGoogle Scholar
Schweitz, K.O., Chevallier, J., Bottiger, J., Matz, W., and Schell, N.: Hardness in Ag/Ni, Au/Ni, and Cu/Ni multilayers. Philos. Mag. A 81, 2021 (2001).CrossRefGoogle Scholar
Anderson, P.M., Foecke, T., and Hazzledine, P.M.: Dislocation-based deformation mechanisms in metallic nanolaminates. MRS Bull. 24, 27 (1999).CrossRefGoogle Scholar
Misra, A., Hirth, J.P., and Hoagland, R.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817 (2005).CrossRefGoogle Scholar
Zhang, G.P., Volkert, C.A., Schwaiger, R., Wellner, P., Arzt, E., and Kraft, O.: Length-scale-controlled fatigue mechanisms in thin copper films. Acta Mater. 54, 3127 (2006).CrossRefGoogle Scholar
Zhang, G.P., Volkert, C.A., Schwaiger, R., Arzt, E., and Kraft, O.: Damage behavior of 200-nm thin copper films under cyclic loading. J. Mater. Res. 20, 201 (2005).CrossRefGoogle Scholar
Koehler, J.S.: Attempt to design a strong solid. Phys. Rev. B 2, 547 (1970).CrossRefGoogle Scholar
Hoagland, R., Mitchell, T., Hirth, J., and Kung, H.: On the strengthening effects of interfaces in multilayer fee metallic composites. Philos. Mag. A 82, 643 (2002).Google Scholar
Li, Y.P. and Zhang, G.P.: On plasticity and fracture of nanostructured Cu/X (X = Au, Cr) multilayers: The effects of length scale and interface/boundary. Acta Mater. 58, 3877 (2010).CrossRefGoogle Scholar
Zhu, X.F. and Zhang, G.P.: Mechanical properties of Cu/Ta and Cu/Ni multilayers, Ph. D Thesis, Institute of Metal Research, Chinese Academy of Sciences (2009).Google Scholar
Zhu, X.F., Zhang, G.P., Tan, J., Liu, Y., and Zhu, S.J.: Damage behavior of Cu–Ta bilayered films under cyclic loading. J. Mater. Res. 22, 2478 (2007).CrossRefGoogle Scholar
Zhu, X.F. and Zhang, G.P.: Tensile and fatigue properties of ultrafine Cu–Ni multilayers. J. Phys. D: Appl. Phys. 42, 055411 (2009).CrossRefGoogle Scholar
Wang, Y.C., Misra, A., and Hoagland, R.G.: Fatigue properties of nanoscale Cu/Nb multilayers. Scr. Mater. 54, 1593 (2006).CrossRefGoogle Scholar
Tan, H.F., Zhang, B., Luo, X.M., Zhu, X.F., and Zhang, G.P.: High-cycle fatigue properties of ultrafine-scale Cu/Ni laminated composites. Adv. Eng. Mater. 18, 2003 (2016).CrossRefGoogle Scholar
Wang, Y.C., Liang, F., Tan, H.F., Zhang, B., and Zhang, G.P.: Enhancing fatigue strength of high-strength ultrafine-scale Cu/Ni laminated composites. Mater. Sci. Eng., A 714, 43 (2018).CrossRefGoogle Scholar
Wang, D., Gruber, P.A., Volkert, C.A., and Kraft, O.: Influences of Ta passivation layers on the fatigue behavior of thin Cu films. Mater. Sci. Eng., A 610, 33 (2014).CrossRefGoogle Scholar
Yang, Y., Imasogie, B.I., Allameh, S.M., Boyce, B., Lian, K., Lou, J., and Soboyejo, W.O.: Mechanisms of fatigue in LIGA Ni MEMS thin films. Mater. Sci. Eng., A 444, 39 (2007).CrossRefGoogle Scholar
Hou, H., Hamilton, R.F., Horn, M.W., and Jin, Y.: NiTi thin films prepared by biased target ion beam deposition co-sputtering from elemental Ni and Ti targets. Thin Solid Films 570, 1 (2014).CrossRefGoogle Scholar
Zheng, S.X., Luo, X.M., Wang, D., and Zhang, G.P.: A novel evaluation strategy for fatigue reliability of flexible nanoscale films. Mater. Res. Express 5, 8 (2018).CrossRefGoogle Scholar
Zhu, X.F., Li, Y.P., Zhang, G.P., and Zhu, S.J.: On strain-localized damage in nanoscale Cu–Ta multilayers on a flexible substrate. Mater. Sci. Eng., A 527, 3279 (2010).CrossRefGoogle Scholar
Zhang, G.P., Zhu, X.F., Tan, J., and Liu, Y.: Origin of cracking in nanoscale Cu/Ta multilayers. Appl. Phys. Lett. 89, 3 (2006).Google Scholar
Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).CrossRefGoogle Scholar
Chen, Y., Liu, Y., Sun, C., Yu, K.Y., Song, M., Wang, H., and Zhang, X.: Microstructure and strengthening mechanisms in Cu/Fe multilayers. Acta Mater. 60, 6312 (2012).CrossRefGoogle Scholar
Zhang, J.Y., Zhang, X., Liu, G., Zhang, G.J., and Sun, J.: Dominant factor controlling the fracture mode in nanostructured Cu/Cr multilayer films. Mater. Sci. Eng., A 528, 2982 (2011).CrossRefGoogle Scholar
Zhou, Q., Zhang, S., Wei, X., Wang, F., Huang, P., and Xu, K.: Improving the crack resistance and fracture toughness of Cu/Ru multilayer thin films via tailoring the individual layer thickness. J. Alloys Compd. 742, 45 (2018).CrossRefGoogle Scholar
Zhu, X.F., Li, Y.P., Zhang, G.P., Tan, J., and Liu, Y.: Understanding nanoscale damage at a crack tip of multilayered metallic composites. Appl. Phys. Lett. 92, 161905 (2008).CrossRefGoogle Scholar
He, M.Y. and Hutchinson, J.W.: Crack deflection at an interface between dissimilar elastic-materials. Int. J. Solids Struct. 25, 1053 (1989).Google Scholar
He, M.Y., Evans, A.G., and Hutchinson, J.W.: Crack deflection at an interface between dissimilar elastic-materials—Role of residual-stresses. Int. J. Solids Struct. 31, 3443 (1994).CrossRefGoogle Scholar
Parmigiani, J.P. and Thouless, M.D.: The roles of toughness and cohesive strength on crack deflection at interfaces. J. Mech. Phys. Solids 54, 266 (2006).CrossRefGoogle Scholar
Li, J., Chen, Y., Xue, S., Wang, H., and Zhang, X.: Comparison of size dependent strengthening mechanisms in Ag/Fe and Ag/Ni multilayers. Acta Mater. 114, 154 (2016).CrossRefGoogle Scholar
Liu, Y., Chen, Y., Yu, K.Y., Wang, H., Chen, J., and Zhang, X.: Stacking fault and partial dislocation dominated strengthening mechanisms in highly textured Cu/Co multilayers. Int. J. Plast. 49, 152 (2013).CrossRefGoogle Scholar
Banerjee, R., Zhang, X.D., Dregia, S.A., and Fraser, H.L.: Phase stability in Al/Ti multilayers. Acta Mater. 47, 1153 (1999).CrossRefGoogle Scholar
Zhou, Q., Li, Y., Wang, F., Huang, P., Lu, T.J., and Xu, K.W.: Length-scale-dependent deformation mechanism of Cu/X (X = Ru, W) multilayer thin films. Mater. Sci. Eng., A 664, 206 (2016).CrossRefGoogle Scholar
Yan, J.W., Zhang, G.P., Zhu, X.F., Liu, H.S., and Yan, C.: Microstructures and strengthening mechanisms of Cu/Ni/W nanolayered composites. Philos. Mag. 93, 434 (2013).CrossRefGoogle Scholar
Bufford, D., Bi, Z., Jia, Q.X., Wang, H., and Zhang, X.: Nanotwins and stacking faults in high-strength epitaxial Ag/Al multilayer films. Appl. Phys. Lett. 101, 223112 (2012).CrossRefGoogle Scholar
Lu, Y.Y., Kotoka, R., Ligda, J.P., Cao, B.B., Yarmolenko, S.N., Schuster, B.E., and Wei, Q.: The microstructure and mechanical behavior of Mg/Ti multilayers as a function of individual layer thickness. Acta Mater. 63, 216 (2014).CrossRefGoogle Scholar
Mara, N.A., Bhattacharyya, D., Dickerson, P., Hoagland, R.G., and Misra, A.: Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl. Phys. Lett. 92, 231901 (2008).CrossRefGoogle Scholar
Baek, D.C. and Lee, S.B.: Fatigue behavior of electrodeposited nanocrystalline nickel films. In 11th International Conference on the Mechanical Behavior of Materials, Guagliano, M. and Vergani, L., eds. (Elsevier Science Bv, Amsterdam, 2011); p. 3006.Google Scholar
Cavaliere, P.: Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals. Int. J. Fatigue 31, 1476 (2009).CrossRefGoogle Scholar
Aktaa, J., Reszat, J., Walter, M., Bade, K., and Hemker, K.: High cycle fatigue and fracture behavior of LIGA nickel. Scr. Mater. 52, 1217 (2005).CrossRefGoogle Scholar
Son, D., Kim, J-j., Lim, T.W., and Kwon, D.: Evaluation of fatigue strength of LIGA nickel film by microtensile tests. Scr. Mater. 50, 1265 (2004).CrossRefGoogle Scholar
Allameh, S.M., Lou, J., Kavishe, F., Buchheit, T., and Soboyejo, W.O.: An investigation of fatigue in LIGA Ni MEMS thin films. Mater. Sci. Eng., A 371, 256 (2004).CrossRefGoogle Scholar
Hanlon, T., Tabachnikova, E.D., and Suresh, S.: Fatigue behavior of nanocrystalline metals and alloys. Int. J. Fatigue 27, 1147 (2005).CrossRefGoogle Scholar
Boyce, B.L., Michael, J.R., and Kotula, P.G.: Fatigue of metallic microdevices and the role of fatigue-induced surface oxides. Acta Mater. 52, 1609 (2004).CrossRefGoogle Scholar
Sun, X.J., Wang, C.C., Zhang, J., Liu, G., Zhang, G.J., Ding, X.D., Zhang, G.P., and Sun, J.: Thickness dependent fatigue life at microcrack nucleation for metal thin films on flexible substrates. J. Phys. D: Appl. Phys. 41, 6 (2008).CrossRefGoogle Scholar
Wang, D., Volkert, C.A., and Kraft, O.: Effect of length scale on fatigue life and damage formation in thin Cu films. Mater. Sci. Eng., A 493, 267 (2008).CrossRefGoogle Scholar
Sim, G-D., Hwangbo, Y., Kim, H-H., Lee, S-B., and Vlassak, J.J.: Fatigue of polymer-supported Ag thin films. Scr. Mater. 66, 915 (2012).CrossRefGoogle Scholar
Daniel, R., Meindlhumer, M., Baumegger, W., Zalesak, J., Sartory, B., Burghammer, M., Mitterer, C., and Keckes, J.: Grain boundary design of thin films: Using tilted brittle interfaces for multiple crack deflection toughening. Acta Mater. 122, 130 (2017).CrossRefGoogle Scholar
Mara, N.A. and Beyerlein, I.J.: Review: Effect of bimetal interface structure on the mechanical behavior of Cu–Nb fcc–bcc nanolayered composites. J. Mater. Sci. 49, 6497 (2014).CrossRefGoogle Scholar
Zheng, S., Carpenter, J.S., McCabe, R.J., Beyerlein, I.J., and Mara, N.A.: Engineering interface structures and thermal stabilities via SPD processing in bulk nanostructured metals. Sci. Rep. 4, 4226 (2014).CrossRefGoogle ScholarPubMed
Mara, N.A., Tamayo, T., Sergueeva, A.V., Zhang, X., Misra, A., and Mukherjee, A.K.: The effects of decreasing layer thickness on the high temperature mechanical behavior of Cu/Nb nanoscale multilayers. Thin Solid Films 515, 3241 (2007).CrossRefGoogle Scholar
Zheng, S.J., Beyerlein, I.J., Carpenter, J.S., Kang, K.W., Wang, J., Han, W.Z., and Mara, N.A.: High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nat. Commun. 4, 8 (2013).CrossRefGoogle ScholarPubMed