Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T07:53:40.957Z Has data issue: false hasContentIssue false

A review of catalytically grown carbon nanofibers

Published online by Cambridge University Press:  03 March 2011

N.M. Rodriguez
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

Carbon nanofibers (sometimes known as carbon filaments) can be produced in a relative large scale by the catalytic decomposition of certain hydrocarbons on small metal particles. The diameter of the nanofibers is governed by that of the catalyst particles responsible for their growth. By careful manipulation of various parameters it is possible to generate carbon nanofibers in assorted conformations and at the same time also control the degree of their crystalline order. This paper is a review of the recent advances made in the development of these nanostructures, with emphasis both on the fundamental aspects surrounding the growth of the material and a discussion of the key factors which enable one to control their chemical and physical properties. Attention is also given to some of the possible applications of the nanostructures which center around the unique blend of properties exhibited by the material.

Type
Article Commentary
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Iijima, S., Nature 354, 56 (1991).CrossRefGoogle Scholar
2Baker, R. T. K. and Harris, P. S., in Chemistry and Physics of Carbon, edited by Walker, P. L. Jr. and Thrower, P. A. (Marcel Dekker, New York, 1978), Vol. 14, p. 83.Google Scholar
3Oberlin, A., Endo, M., and Koyama, T., J. Cryst. Growth 32, 335 (1976).CrossRefGoogle Scholar
4Dresselhaus, M. S., Dresselhaus, G., Sugihara, K., Spain, I. L., and Goldberg, H. A., Graphite Fibers and Filaments, Springer Series in Materials Science 5 (Springer-Verlag, New York, 1988).CrossRefGoogle Scholar
5Carbon Fibers, Filaments and Composites, edited by Figueiredo, J. L., Bernardo, C. A., Baker, R. T. K., and Huttinger, K. J., NATO ASI Series (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1989), Vol. 177, pp. 405, 562.Google Scholar
6Schutzenberger, P., C. R. Acad. Sci. Paris 111, 774 (1980).Google Scholar
7Rostrup-Nielsen, J. R., Steam Reforming Catalysts, Tekorisk Forlay A/S (Danish Technical Press, Copenhagen, 1975).Google Scholar
8Trimm, D. L., Catal. Rev.-Sci. Eng. 16, 155 (1977).CrossRefGoogle Scholar
9Coke Formation on Metal Surfaces, edited by Albright, L. F. and Baker, R. T. K., ACS Symposium Series 202 (1982).Google Scholar
10Bennett, M. J. and Price, J. B., J. Mater. Sci. 16, 170 (1981).CrossRefGoogle Scholar
11Bartholomew, C. H., Catal. Rev.-Sci. Eng. 24, 67 (1982).CrossRefGoogle Scholar
12Baker, R. T. K., Barber, M. A., Harris, P. S., Feates, F. S., and Waite, R. J., J. Catal. 26, 51 (1972).CrossRefGoogle Scholar
13Baker, R. T. K., Terry, S., and Harris, P. S., Nature 253, 37 (1975).CrossRefGoogle Scholar
14Baker, R. T. K., Harris, P. S., Thomas, R. B., and Waite, R. J., J. Catal. 30, 86 (1973).CrossRefGoogle Scholar
15Boehm, H. P., Carbon 11, 583 (1973).CrossRefGoogle Scholar
16Tavares, M. T., Bernardo, C. A., Alstrup, I., and Rostrup-Nielsen, J. R., J. Catal. 100, 545 (1986).CrossRefGoogle Scholar
17Motojima, S., Kawaguchi, M., Nozaki, K., and Iwanaga, H., Carbon 29, 379 (1991).Google Scholar
18Baird, T., Fryer, J. R., and Grant, B., Nature 233, 329 (1971).CrossRefGoogle Scholar
19Audier, M., Oberlin, A., and Coulon, M., J. Cryst. Growth 55, 549 (1981).CrossRefGoogle Scholar
20Boellaard, E., DeBokx, P. K., Kock, A. J. H. M., and Geus, J. W., J. Catal. 96, 481 (1985).CrossRefGoogle Scholar
21Raghavan, M., Proc. 37th Annual EMSA Meeting, edited by Bailey, G. W., p. 484.Google Scholar
22Audier, M., Oberlin, A., Oberlin, M., Coulon, M., and Bonnetain, L., Carbon 19, 217 (1981).CrossRefGoogle Scholar
23Tibbetts, G. G., J. Cryst. Growth 66, 632 (1984).Google Scholar
24Yang, R. T. and Chen, J. P., J. Catal. 115, 52 (1989).CrossRefGoogle Scholar
25Goodman, D. W., Kelley, R. D., Madey, T. E., and Yates, J. T. Jr., J. Catal. 63, 226 (1980).CrossRefGoogle Scholar
26Nakamura, J., Hirano, H., Xie, M., Matsuo, I., Yamada, T., and Tanaka, K., Surf. Sci. 222, L809 (1989).Google Scholar
27Figueiredo, J. L., Bernardo, C. A., Chludzinski, J. J., and Baker, R. T. K., J. Catal. 110, 127 (1988).CrossRefGoogle Scholar
28Koyama, T., Carbon 10, 757 (1972).CrossRefGoogle Scholar