Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-03T23:50:16.242Z Has data issue: false hasContentIssue false

Revealing the ductility of nanoceramic MgAl2O4

Published online by Cambridge University Press:  15 May 2019

Bin Chen*
Affiliation:
Center for High Pressure Science & Technology Advanced Research, Pudong, Shanghai 201203, China
Yuanjie Huang
Affiliation:
Center for High Pressure Science & Technology Advanced Research, Pudong, Shanghai 201203, China
Jianing Xu
Affiliation:
Center for High Pressure Science & Technology Advanced Research, Pudong, Shanghai 201203, China
Xiaoling Zhou
Affiliation:
Center for High Pressure Science & Technology Advanced Research, Pudong, Shanghai 201203, China
Zhiqiang Chen*
Affiliation:
Center for High Pressure Science & Technology Advanced Research, Pudong, Shanghai 201203, China
Hengzhong Zhang
Affiliation:
Center for High Pressure Science & Technology Advanced Research, Pudong, Shanghai 201203, China
Jie Zhang
Affiliation:
Department of Physics, Sichuan University, Chengdu, Sichuan 610064, China
Jianqi Qi
Affiliation:
Department of Physics, Sichuan University, Chengdu, Sichuan 610064, China
Tiecheng Lu
Affiliation:
Department of Physics, Sichuan University, Chengdu, Sichuan 610064, China
Jillian F. Banfield
Affiliation:
Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
Jinyuan Yan
Affiliation:
Advanced Light Source, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
Selva Vennila Raju
Affiliation:
Advanced Light Source, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
Arianna E. Gleason
Affiliation:
Advanced Light Source, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
Simon Clark
Affiliation:
Advanced Light Source, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
Alastair A. MacDowell
Affiliation:
Advanced Light Source, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Ceramics are strong but brittle. According to the classical theories, ceramics are brittle mainly because dislocations are suppressed by cracks. Here, the authors report the combined elastic and plastic deformation measurements of nanoceramics, in which dislocation-mediated stiff and ductile behaviors were detected at room temperature. In the synchrotron-based deformation experiments, a marked slope change is observed in the stress–strain relationship of MgAl2O4 nanoceramics at high pressures, indicating that a deformation mechanism shift occurs in the compression and that the nanoceramics sample is elastically stiffer than its bulk counterpart. The bulk-sized MgAl2O4 shows no texturing at pressures up to 37 GPa, which is compatible with the brittle behaviors of ceramics. Surprisingly, substantial texturing is seen in nanoceramic MgAl2O4 at pressures above 4 GPa. The observed stiffening and texturing indicate that dislocation-mediated mechanisms, usually suppressed in bulk-sized ceramics at low temperature, become operative in nanoceramics. This makes nanoceramics stiff and ductile.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

Present address: SLAC National Accelerator Laboratory, Menlo Park, CA 94,305, USA.

References

Clegg, W.J.: Controlling cracks in ceramics. Science 286, 10971099 (1999).CrossRefGoogle Scholar
Karch, J., Birringer, R., and Gleiter, H.: Ceramics ductile at low temperature. Nature 330, 556558 (1987).CrossRefGoogle Scholar
Dominguez-Rodriguez, A., Gómez-García, D., Zapata-Solvas, E., Shen, J.Z., and Chaim, R.: Making ceramics ductile at low homologous temperatures. Scr. Mater. 56, 8991 (2007).CrossRefGoogle Scholar
Jang, D. and Greer, J.R.: Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat. Mater. 9, 215 (2010).CrossRefGoogle ScholarPubMed
Siegel, R.: Materials Science and Technology—A Comprehensive Treatment, Vol. 15: Processing of Metals and Alloys, ed. Cahn, R.W. (VCH, Weinheim, Germany, 1991).Google Scholar
Gleiter, H.: Nanocrystalline materials. Prog. Mater. Sci. 33, 223315 (1989).CrossRefGoogle Scholar
Kumar, K.S., Suresh, S., Chisholm, M.F., Horton, J.A., and Wang, P.: Deformation of electrodeposited nanocrystalline nickel. Acta Mater. 51, 387405 (2003).CrossRefGoogle Scholar
Shan, Z.W., Wiezorek, J.M., Stach, E.A., Follstaedt, D.M., Knapp, J.A., and Mao, S.X.: Dislocation dynamics in nanocrystalline nickel. Phys. Rev. Lett. 98, 095502 (2007).CrossRefGoogle ScholarPubMed
Wang, L., Han, X., Liu, P., Yue, Y., Zhang, Z., and Ma, E.: In situ observation of dislocation behavior in nanometer grains. Phys. Rev. Lett. 105, 135501 (2010).CrossRefGoogle ScholarPubMed
Chen, M., Ma, E., Hemker, K.J., Sheng, H., Wang, Y., and Cheng, X.: Deformation twinning in nanocrystalline aluminum. Science 300, 12751277 (2003).CrossRefGoogle ScholarPubMed
Lu, L., Chen, X., Huang, X., and Lu, K.: Revealing the maximum strength in nanotwinned copper. Science 323, 607610 (2009).CrossRefGoogle ScholarPubMed
Li, X., Wei, Y., Lu, L., Lu, K., and Gao, H.: Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 464, 877880 (2010).CrossRefGoogle ScholarPubMed
Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K., and Gleiter, H.: Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nat. Mater. 1, 4548 (2002).CrossRefGoogle ScholarPubMed
Murayama, M., Howe, J.M., Hidaka, H., and Takaki, S.: Atomic-level observation of disclination dipoles in mechanically milled, nanocrystalline Fe. Science 295, 24332435 (2002).CrossRefGoogle ScholarPubMed
Schiøtz, J. and Jacobsen, K.W.: A maximum in the strength of nanocrystalline copper. Science 301, 13571359 (2003).CrossRefGoogle ScholarPubMed
Penn, R.L. and Banfield, J.F.: Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science 281, 969971 (1998).CrossRefGoogle ScholarPubMed
Weissmüller, J. and Markmann, J.: Deforming nanocrystalline metals: New insights, new puzzles. Adv. Eng. Mater. 7, 202207 (2005).CrossRefGoogle Scholar
Tolbert, S.H., Herhold, A.B., Brus, L.E., and Alivisatos, A.: Pressure-induced structural transformations in Si nanocrystals: Surface and shape effects. Phys. Rev. Lett. 76, 4384 (1996).CrossRefGoogle Scholar
Tolbert, S. and Alivisatos, A.: Size dependence of a first order solid-solid phase transition: The wurtzite to rock salt transformation in CdSe nanocrystals. Science 265, 373376 (1994).CrossRefGoogle ScholarPubMed
Cottrell, A.H.: Theory of brittle fracture in steel and similar metals. Trans. Metall. Soc. AIME 212 (1958).Google Scholar
Yip, S.: Nanocrystalline metals: Mapping plasticity. Nat. Mater. 3, 11 (2004).CrossRefGoogle ScholarPubMed
Dal Maschio, R., Fabbri, B., and Fiori, C.: Industrial applications of refractories containing magnesium aluminate spinel. Ind. Ceram. 8, 121126 (1988).Google Scholar
Burnley, P. and Green, H. II: Stress dependence of the mechanism of the olivine–spinel transformation. Nature 338, 753 (1989).CrossRefGoogle Scholar
Merkel, S., McNamara, A.K., Kubo, A., Speziale, S., Miyagi, L., Meng, Y., Duffy, T.S., and Wenk, H.R.: Deformation of (Mg,Fe)SiO3 post-perovskite and D″ anisotropy. Science 316, 17291732 (2007).CrossRefGoogle ScholarPubMed
Kruger, M., Nguyen, J., Caldwell, W., and Jeanloz, R.: Equation of state of MgAl2O4 spinel to 65 GPa. Phys. Rev. B 56, 1 (1997).CrossRefGoogle Scholar
Levy, D., Pavese, A., and Hanfland, M.: Synthetic MgAl2O4 (spinel) at high-pressure conditions (0.0001–30 GPa): A synchrotron X-ray powder diffraction study. Am. Mineral. 88, 9398 (2003).CrossRefGoogle Scholar
Lutterotti, L., Matthies, S., Wenk, H.R., Schultz, A.S., and Richardson, J.W.: Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J. Appl. Phys. 81, 594 (1997).CrossRefGoogle Scholar
Birch, F.: Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K. J. Geophys. Res.: Solid Earth 83, 12571268 (1978).CrossRefGoogle Scholar
Nix, W.D. and Gao, H.: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411425 (1998).CrossRefGoogle Scholar
Budiman, A., Han, S., Greer, J., Tamura, N., Patel, J., and Nix, W.: A search for evidence of strain gradient hardening in Au submicron pillars under uniaxial compression using synchrotron X-ray microdiffraction. Acta Mater. 56, 602608 (2008).CrossRefGoogle Scholar
Groma, I. and Borbely, A.: Diffraction Analysis of the Microstructure of Materials (Springer Science & Business Media, 2004).Google Scholar
Wertheim, G., Butler, M., West, K., and Buchanan, D.: Determination of the Gaussian and Lorentzian content of experimental line shapes. Rev. Sci. Instrum. 45, 13691371 (1974).CrossRefGoogle Scholar
Chen, B., Lutker, K., Raju, S.V., Yan, J., Kanitpanyacharoen, W., Lei, J., Yang, S., Wenk, H.R., Mao, H.K., and Williams, Q.: Texture of nanocrystalline nickel: Probing the lower size limit of dislocation activity. Science 338, 14481451 (2012).CrossRefGoogle ScholarPubMed
Ali, H.P.A., Tamura, N., and Budiman, A.S.: Probing plasticity and strain-rate effects of indium submicron pillars using synchrotron Laue X-ray microdiffraction. IEEE Trans. Device Mater. Reliab. 18, 490497 (2018).Google Scholar
Mitchell, T.E.: Dislocations and mechanical properties of MgO–Al2O3 spinel single crystals. J. Am. Ceram. Soc. 82, 33053316 (1999).CrossRefGoogle Scholar
Kocks, U.F., Tomé, C.N., Wenk, H-R., and Beaudoin, A.J.: Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties (Cambridge university Press, 2000).Google Scholar
Hirth, J.P. and Lothe, J.: Theory of Dislocations (Kreiger Publishing, Malabar, U.K., 1992).Google Scholar
Nieh, T. and Wadsworth, J.: Hall-Petch relation in nanocrystalline solids. Scr. Metall. Mater. 25, 955958 (1991).CrossRefGoogle Scholar
Anderson, O.L. and Isaak, D.G.: Elastic constants of mantle minerals at high temperature. In Mineral physics & crystallography: A handbook of physical constants, Vol. 2 (1995); pp. 6497.Google Scholar
Wdowik, U., Parliński, K., and Siegel, A.: Elastic properties and high-pressure behavior of MgAl2O4 from ab initio calculations. J. Phys. Chem. Solids 67, 14771483 (2006).CrossRefGoogle Scholar
Doukhan, N., Duclos, R., and Escaig, B.: Sessile dissociation in the stoichiometric spinel MgAl2O4. J. Phys. 40, 381387 (1979).CrossRefGoogle Scholar
Ashby, M., Gelles, S., and Tanner, L.E.: The stress at which dislocations are generated at a particle-matrix interface. Philos. Mag. 19, 757771 (1969).CrossRefGoogle Scholar
Meade, C. and Jeanloz, R.: Yield strength of the B1 and B2 phases of NaCl. J. Geophys. Res.: Solid Earth 93, 32703274 (1988).CrossRefGoogle Scholar
Dauskardt, R.: A frictional-wear mechanism for fatigue-crack growth in grain bridging ceramics. Acta Metall. Mater. 41, 27652781 (1993).CrossRefGoogle Scholar
Radchenko, I., Anwarali, H., Tippabhotla, S., and Budiman, A.: Effects of interface shear strength during failure of semicoherent metal–metal nanolaminates: An example of accumulative roll-bonded Cu/Nb. Acta Mater. 156, 125135 (2018).CrossRefGoogle Scholar
Gilbert, B., Huang, F., Zhang, H., Waychunas, G.A., and Banfield, J.F.: Nanoparticles: Strained and stiff. Science 305, 651654 (2004).CrossRefGoogle ScholarPubMed
Lee, G., Kim, J-Y., Burek, M.J., Greer, J.R., and Tsui, T.Y.: Plastic deformation of indium nanostructures. Mater. Sci. Eng., A 528, 61126120 (2011).CrossRefGoogle Scholar
Razorenov, S.: Influence of structural factors on the strength properties of aluminum alloys under shock wave loading. Matter Radiat. Extremes 3, 145 (2018).CrossRefGoogle Scholar
Chung, H-Y., Weinberger, M.B., Levine, J.B., Kavner, A., Yang, J-M., Tolbert, S.H., and Kaner, R.B.: Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure. Science 316, 436439 (2007).CrossRefGoogle ScholarPubMed
Godefroo, S., Hayne, M., Jivanescu, M., Stesmans, A., Zacharias, M., Lebedev, O., Van Tendeloo, G., and Moshchalkov, V.V.: Classification and control of the origin of photoluminescence from Si nanocrystals. Nat. Nanotechnol. 3, 174 (2008).CrossRefGoogle ScholarPubMed
Jackson, M., Robinson, G., Ali, N., Kousar, Y., Mei, S., Gracio, J., Taylor, H., and Ahmed, W.: Surface engineering of artificial heart valve disks using nanostructured thin films deposited by chemical vapour deposition and sol–gel methods. J. Med. Eng. Technol. 30, 323329 (2006).CrossRefGoogle ScholarPubMed
Lei, J., Chen, B., Guo, S., Wang, K., Tan, L., Khosravi, E., Yan, J., Vennila Raju, S., and Yang, S.: Structural and mechanical stability of dilute yttrium doped chromium. Appl. Phys. Lett. 102, 021901 (2013).CrossRefGoogle Scholar
Presting, H. and König, U.: Future nanotechnology developments for automotive applications. Mater. Sci. Eng., C 23, 737741 (2003).CrossRefGoogle Scholar
Ikesue, A. and Aung, Y.L.: Ceramic laser materials. Nat. Photonics 2, 721 (2008).CrossRefGoogle Scholar
Lu, T., Chang, X., Qi, J., Luo, X., Wei, Q., Zhu, S., Sun, K., Lian, J., and Wang, L.: Low-temperature high-pressure preparation of transparent nanocrystalline MgAl2O4 ceramics. Appl. Phys. Lett. 88, 213120 (2006).CrossRefGoogle Scholar