Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-08T13:25:23.941Z Has data issue: false hasContentIssue false

RETRACTED–Electron-driven engineering of graphene

Published online by Cambridge University Press:  15 October 2013

Mark H. Rümmeli*
Affiliation:
Center for Integrated Nanostructure Physics (CINAP) IBS, Daejon 305-701, Republic of Korea; and Department of Energy Science, Department of Physics, Sungkyunkwan University, Suwon 440-746, Republic of Korea
Alicja Bachmatiuk*
Affiliation:
Center for Integrated Nanostructure Physics (CINAP) IBS, Daejon 305-701, Republic of Korea; Department of Energy Science, Department of Physics, Sungkyunkwan University, Suwon 440-746, Republic of Korea; and IFW Dresden, Institute of Complex Materials, 01069 Dresden, Germany
Young Hee Lee*
Affiliation:
Center for Integrated Nanostructure Physics (CINAP) IBS, Daejon 305-701, Republic of Korea; and Department of Energy Science, Department of Physics, Sungkyunkwan University, Suwon 440-746, Republic of Korea
Juergen Eckert*
Affiliation:
IFW Dresden, Institute of Complex Materials, 01069 Dresden, Germany; and TU Dresden, Institute of Materials Science, 01062 Dresden, Germany
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Electron microscopes are proving themselves indispensible tools in the world of nanotechnology. In this brief overview, we explore the potential of electrons within in situ transmission electron microscopy (TEM) with the electrons provided either from the imaging electron beam or from electrical currents across contacted specimens to nanoengineered graphene based on work at our labs. The use of electrons is demonstrated to be enormously versatile to pattern, heal, and even fabricate graphene. In essence, electrons provide a useful engineering tool box that with further development will enable device fabrication and modification inside a TEM, thus allowing one to study structure–property relationships of graphene as well as other low dimensional materials in near real time with atomic precision.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Krasheninnikov, A.V. and Banhart, F.: Engineering of nano-structured carbon materials with electrons or ion beams. Nat. Mater. 6, 723 (2007).Google Scholar
Egerton, R.F., Li, P., and Malac, M.: Radiation damage in the TEM and SEM. Micron 35, 399 (2004).Google Scholar
Banhart, F.: Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 62, 1181 (1999).Google Scholar
Börrnert, F., Bachmatiuk, A., Gorantla, S., Wolf, D., Lubk, A., Büchner, B., and Rümmeli, M.H.: Retro-fitting an older (S)TEM with two Cs aberration correctors for 80 kV and 60 kV operation. J. Microsc. 249, 87 (2013).Google Scholar
Barreiro, A., Börrnert, F., Rümmeli, M.H., Büchner, B., and Vandersypen, L.M.K.: Graphene at high bias: Cracking, layer by layer sublimation, and fusing. Nano Lett. 12, 1873 (2012).Google Scholar
Börrnert, F., Barreiro, A., Wolf, D., Katsnelson, M.I., Büchner, B., Vandersypen, M.K.L., and Rümmeli, M.H.: Lattice expansion in seamless bilayer graphene constrictions at high bias. Nano Lett. 12, 4455 (2012).CrossRefGoogle ScholarPubMed
Rümmeli, M.H., Rocha, C.G., Ortmann, F., Ibrahim, I., Sevincli, H., Börrnert, F., Kunstmann, J., Bachmatiuk, A., Potschke, M., Shiraishi, M., Meyyappan, M., Büchner, B., Roche, S., and Cuniberti, G.: Inducing and optimizing magnetism in graphene nanomeshes. Adv. Mater. 23, 4471 (2011).Google Scholar
Warner, J., Schäffel, F., Bachmatiuk, A., and Rümmeli, M.H.: Graphene - Fundamentals and Emergent Applications (Elsevier, UK, 2013) ISBN: 9780123945938.Google Scholar
Nakada, K., Fujita, M., Dresselhaus, G., and Dresselhaus, M.S.: Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954 (1996).Google Scholar
Nemec, N.: Quantum transport in carbon-based nanostructures. Ph.D. Thesis, University of Regensburg, Germany, 2007.Google Scholar
Han, M.Y., Ozylmaz, B., Zhang, Y., and Kim, P.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).Google Scholar
Meyer, J.C., Eder, F., Kurasch, S., Skakalova, V., Kotakoski, J., Park, H.J., Roth, S., Chuvilin, A., Eyhusen, S., Benner, G., Krasheninnikov, A.V., and Kaiser, U.: Accurate measurement of electron beam induced displacement cross sections for single-layer graphene. Phys. Rev. Lett. 108, 196102 (2012).Google Scholar
Warner, J.H., Rümmeli, M.H., Ge, L., Gemming, T., Montanari, B., Harrison, N.M., Büchner, B., and Briggs, G.A.D.: Structural transformations in graphene studied with high spatial and temporal resolution. Nat. Nanotechnol. 4, 500 (2009).Google Scholar
Zobelli, A., Gloter, A., Ewels, C.P., Seifert, G., and Colliex, C.: Electron knock-on cross section of carbon and boron nitride nanotubes. Phys. Rev. B 75, 245402 (2007).Google Scholar
Warner, J.H., Rümmeli, M.H., Bachmatiuk, A., and Büchner, B.: Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation. ACS Nano 4, 1299 (2010).Google Scholar
Meyer, J.C., Chuvilin, A., Algara-Siller, G., Biskupek, J., and Kaiser, U.: Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. Nano Lett. 9, 2683 (2009).Google Scholar
Lin, C., Lin, F., Suenaga, K., and Iijima, S.: Fabrication of a freestanding boron nitride layer and its defect assignments. Phys. Rev. Lett. 102, 195505 (2009).Google Scholar
Börrnert, F., Fu, L., Gorantla, S., Knupfer, M., Büchner, B., and Rümmeli, M.H.: Programmable sub-nanometer sculpting of graphene with electron beams. ACS Nano 6, 10327 (2012).Google Scholar
Börrnert, F., Avdoshenko, S.M., Bachmatiuk, A., Ibrahim, I., Büchner, B., Cuniberti, G., and Rümmeli, M.H.: A means to make or break graphene. Adv. Mater. 24, 5630 (2012).Google Scholar
Ugarte, D.: Carbon onions introduce new flavour to fullerene studies. Nature 359, 707 (1992).Google Scholar
Moser, J., Barreiro, A., and Bachtold, A.: Current-induced cleaning of graphene. Appl. Phys. Lett. 91, 163513 (2007).Google Scholar
Huang, J.Y., Ding, F., Yakobson, B., Lu, P., Qi, L., and Lu, J.: In situ observation of graphene sublimation and multi-layer edge reconstructions. Proc. Natl. Acad. U. S. A. 106, 10103 (2009).Google Scholar
Barreiro, A., Börrnert, F., Avdoshenko, S.M., Rellinghaus, B., Cuniberti, G., Rümmeli, M.H., and Vandersypen, L.M.K.: Understanding the catalyst-free transformation of amorphous carbon into graphene by current-induced annealing. Sci. Rep. 3, 1115 (2013).Google Scholar
Warner, J.H., Rümmeli, M.H., Gemming, T., Büchner, B., and Briggs, G.A.D.: Direct imaging of rotational stacking faults in few layer graphene. Nano Lett. 9, 102 (2009).Google Scholar