Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T15:01:54.758Z Has data issue: false hasContentIssue false

Residual stress and microstructure of as-deposited and annealed, sputtered yttria-stabilized zirconia thin films

Published online by Cambridge University Press:  31 January 2011

David J. Quinn*
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Brian Wardle
Affiliation:
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
S. Mark Spearing
Affiliation:
School of Engineering Sciences, Southampton University, Southampton SO17 1BJ, United Kingdom
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The microstructure and residual stress of sputter-deposited yttria-stabilized zirconia (YSZ) films are presented as a function of thickness (5–1000 nm), deposition pressure (5–100 mTorr), and post-deposition temperature. The as-deposited residual stress of YSZ ranges from −1.4 GPa to 100 MPa with variations in sputtering conditions. Transitions from compressive to tensile stress are identified with variations in working pressure and film thickness. The origins and variations in as-deposited stress are determined to be from tensile stress due to grain coalescence/growth, and compressive stresses are due to forward sputtering/“atomic peening” of target atoms. The evolution of residual stress with post-deposition annealing shows a tensile stress hysteresis of up to 1 GPa for films deposited at low working pressures. This hysteresis is believed to be due to crystallization and the diffusive relief of compressive stresses initially generated by atomic peening during deposition. Discussion and evaluation of other common residual stress mechanisms are presented throughout.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ji, Z., Haynes, A., Voelkl, E., Rigsbee, J.M.: Phase formation and stability in reactively sputter deposited yttria-stabilized zirconia coatings. J. Am. Ceram. Soc. 84, 929 2001Google Scholar
2Subbarao, E.C.: Zirconia: An overview in Advances in Ceramics,Vol. 3, edited by A.H. Heuer and L.W. Hobbs (American Ceramic Society, Columbus, OH, 1981Google Scholar
3Cells High Temperature Solid Oxide Fuels Fundamentals; Design and Applications edited by S.C. Singhal and K. Kendall Elsevier Oxford, UK 2003Google Scholar
4Steele, B.C.H.: Material science and engineering: The enabling technology for the commercialisation of fuel cell systems. J. Mater. Sci. 36, 1053 2001Google Scholar
5Steele, B.C., Heinzel, A.: Materials for fuel-cell technologies. Nature 414, 345 2001CrossRefGoogle ScholarPubMed
6Steele, B.C.H.: Materials for high-temperature fuel cells. Philos. Trans. R. Soc. London, Ser. A 354, 1695 1996Google Scholar
7Will, J., Mitterdorfer, A., Kleinlogel, C., Perednis, D., Gauckler, L.J.: Fabrication of thin electrolytes for second-generation solid oxide fuel cells. Solid State Ionics 131, 79 2000CrossRefGoogle Scholar
8Yamamoto, N. Thermomechanical properties and performance of microfabricated solid oxide fuel cell structures, Masters Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2006Google Scholar
9Srikar, V.T., Turner, K., Ie, T-Z.A., Spearing, S.M.: Structural design considerations for micromachined solid oxide fuel cells. J. Power Sources 125, 62 2004CrossRefGoogle Scholar
10Tang, Y., Stanley, K., Wu, J., Ghosh, D., Zhang, J.: Design consideration of micro thin film solid-oxide fuel cells. J. Micromech. Microeng. 15, S185 2005CrossRefGoogle Scholar
11Baertsch, C.D., Jensen, K.F., Hertz, J.L., Tuller, H.L., Vengallatore, V.T.S., Spearing, S.M., Schmidt, M.A.: Fabrication and structural characterization of self-supporting electrolyte membranes for a micro solid-oxide fuel cell. J. Mater. Res. 19, 2604 2004Google Scholar
12Stoney, G.G.: The tension of metallic films deposited by electrolysis. Proc. R. Soc. London, Ser. A 82, 172 1909Google Scholar
13Hertz, J. Microfabrication methods to improve the kinetics of the yttria stabilized zirconia–platinum–oxygen electrode, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2006, p. 194Google Scholar
14Knoll, R.W., Bradley, E.R.: Correlation between the stress and microstructure in bias-sputtered ZrO2-Y2O3 films. Thin Solid Films 117, 201 1984CrossRefGoogle Scholar
15Garvie, R.C., Hannick, R.H., Pascoe, R.T.: Ceramic steel? Nature 258, 703 1975Google Scholar
16Garvie, R.C.: Stabilization of the tetragonal structure in zirconia microcrystals. J. Phys. Chem. 82, 218 1978CrossRefGoogle Scholar
17Ji, Z., Rigsbee, J.M.: Growth of tetragonal zirconia coatings by reactive sputter deposition. J. Am. Ceram. Soc. 84, 2841 2001CrossRefGoogle Scholar
18Ohring, M.Materials Science of Thin Films 2 ed.(Academic Press, San Diego, 2002Google Scholar
19Windischmann, H.: Intrinsic stress in sputter-deposited thin films. Crit. Rev. Solid State Mater. Sci. 17, 547 1992Google Scholar
20Thornton, J.A., Tabock, J., Hoffman, D.W.: Internal stress in metallic films deposited by cylindrical magnetron sputtering. Thin Solid Films 64, 111 1979CrossRefGoogle Scholar
21Thornton, J.A., Hoffman, D.W.: The influence of discharge current on the intrinsic stress in Mo films deposited using cylindrical and planar magnetron sputtering sources. J. Vac. Sci. Technol., A 3, 576 1985Google Scholar
22Doerner, M.F., Nix, W.D.: Stresses and deformation processes in thin films on substrates. Crit. Rev. Solid State Mater. Sci. 14, 225 1988Google Scholar
23Cammarata, R.C., Trimble, T.M.: Surface stress model for intrinsic stresses in thin films. J. Mater. Res. 15, 2468 2000Google Scholar
24Doljack, F.A., Hoffman, R.W.: The origin of stress in thin nickel films. Thin Solid Films 12, 71 1972Google Scholar
25Freund, L.B., Chason, E.: Model for stress generated upon contact of neighboring islands on the surface of a substrate. J. Appl. Phys. 89, 4866 2001CrossRefGoogle Scholar
26Hoffman, R.W.: The mechanical properties of non-metallic thin films in Physics of Nonmetallic Thin Films,Vol. B-14, NATO Advanced Study Institute Seriesedited by C.H.S. Dupuy and A. Cachard (Plenum Press, Armonk, New York, 1976 273Google Scholar
27Sheldon, B., Rajamani, A., Bhandari, A., Chason, E., Hong, S.K., Beresford, R.: Competition between tensile and compressive stress mechanisms during Volmer-Weber growth of aluminum nitride films. J. Appl. Phys. 98, 043509 2005CrossRefGoogle Scholar
28Nix, W.D., Clemens, B.M.: Crystallite coalescence: A mechanim for intrinsic tensile stresses in films. J. Mater. Res. 14, 3467 1999Google Scholar
29Thompson, C.V., Carel, R.: Stress and grain growth in thin films. J. Mech. Phys. Solids 44, 657 1996CrossRefGoogle Scholar
30Gao, P., Meng, L.J., Santos, M.P.d., Teixeira, V., Andritschky, M.: Study of ZrO2-Y2O3 films prepared by rf magnetron reactive sputtering. Thin Solid Films 377/378, 32 2000CrossRefGoogle Scholar
31Carneiro, J.O., Teixeira, V., Portinha, A., Vaz, F., Ferreira, J.A.: A real time scale measurement of residual stress evolution during coating deposition using electric extensometry. Rev. Adv. Mater. Sci. 7, 32 2004Google Scholar
32Hoffman, D.W. Perspective on stresses in magnetron-sputtered thin films. J. Vac. Sci. Technol., A, 12, 953 1994Google Scholar
33Gardner, D.: Mechanical stress as a function of temperature in aluminum films. IEEE Trans. Electron Devices 35, 2160 1988Google Scholar
34Pawlewiez, W.T., Hays, D.D.: Microstructure control for sputter deposited ZrO2, ZrO2-CaO, and ZrO2 - Y2O3. Thin Solid Films 94, 31 1982Google Scholar
35Knoll, R.W., Bradley, E.R.: Microstructure and phase composition of sputter-deposited zirconia-yttria films in Plasma Processing and Synthesis of Materials,edited by J. Szekely and D. Apelian (Mater. Res. Soc. Symp. Proc. 30, North-Holland, New York, 1984 235-243Google Scholar
36Liaw, B.Y., Rocheleau, R.E., Gao, Q.: Thin film yttria-stabilized tetragonal zirconia. Solid State Ionics 92, 85 1996Google Scholar
37Ruddell, D., Stoner, B., Thompson, J.Y.: The effect of deposition parameters on the properties of yttria-stabilized zirconia thin films. Thin Solid Films 445, 14 2003Google Scholar
38Chung, T.J., Song, H., Kim, G.H., Kim, D.Y.: Microstructure and phase stability of yttria-doped tetragonal zircoina polycrystals heat treated in nitrogen atmosphere. J. Am. Ceram. Soc. 80, 2607 1997CrossRefGoogle Scholar
39Fong, D. Stresses in Cu thin films and Ag/Ni multilayers, Ph.D. Thesis, Harvard University, Cambridge, MA, 2001, p. 198Google Scholar
40Harting, M., Ntsoane, T., Bucher, R.: Influence of annealing on the residual stress in sputter-deposited platinum films. Adv. Eng. Mater. 4, 607 2002Google Scholar
41Hodge, T., Bidstrup-Allen, S., Kohl, P. Stresses in thin film metallization. IEEE Trans. Components Packaging Manufact. Technol., A, 20, 241 1997Google Scholar
42Chaudhari, P.: Grain growth and stress relief in thin films. J. Vac. Sci. Technol. 9, 520 1971CrossRefGoogle Scholar
43Estrin, Y., Gottstein, G., Rabkin, E., Shvindlerman, L.S.: Grain growth in thin metallic films. Acta Mater. 49, 673 2001Google Scholar
44Windischmann, H.: An intrinsic stress scaling law for polycrystalline thin films prepared by ion beam sputtering. J. Appl. Phys. 62, 1800 1987Google Scholar
45Balluffi, R.W., Blakely, J.M.: Special aspects of diffusion in thin films. Thin Solid Films 25, 363 1975CrossRefGoogle Scholar
46Gjostein, N.A.: Diffusion American Society for Metals Materials Park, OH 1973Google Scholar