Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T23:04:23.128Z Has data issue: false hasContentIssue false

The research of CdZnTe (111)B surface with synchrotron radiation photoemission spectroscopy

Published online by Cambridge University Press:  31 January 2011

Gangqiang Zha*
Affiliation:
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Li Fu
Affiliation:
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Faqiang Xu
Affiliation:
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The clean and ordered surfaces of CdZnTe (111)B grown by the Bridgman method were obtained by Ar ion bombardment and thermal annealing in situ in an ultrahigh vacuum. The surface atomic structures of CdZnTe (111)B after annealing at different temperature were observed by low-energy electron diffraction (LEED). The valence band and work function of CdZnTe (111)B surfaces were determined by synchrotron radiation photoemission spectroscopy. The order of CdZnTe (111)B after annealing at 350 °C will worsen, and the (111)B-(2 × 2) local reconstruction will be formed. The work function of CdZnTe (111)B after annealing at 350 °C is 0.8 eV higher than that of CdZnTe (111)B-(1 × 1), and the local reconstruction may be induced by Te adatoms on top of the ideal truncation.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Eisen, Y. and Shor, A.: CdTe and CdZn Te materials for room-temperature x-ray and gamma ray detectors. J. Cryst. Growth 184, 1302 (1998).CrossRefGoogle Scholar
2.Zha, G., Jie, W., Zeng, D., Xu, Y., Zhang, W., and Xu, F.: The study on Schottky contact between Au and clean CdZnTe. Surf. Sci. 600, 2629 (2006).CrossRefGoogle Scholar
3.Wu, Y.S., Becker, C.R., Waag, A., Kraus, M.M., Bicknell-Tassius, R.N., and Landwehr, G.: Correlation of the Cd-to-Te ratio on CdTe surfaces with the surface structure. Phys. Rev. B: Condens. Matter 44, 8904 (1990).CrossRefGoogle Scholar
4.Veron, M.B., Sauvage-Simkin, M., Etgens, V.H., Tatarenko, S., Van Der Vegt, H.A., and Ferrer, S.: Atomic structure of the CdTe (001) C(2 × 2) reconstructed surface: A grazing incidence x-ray diffraction study. Appl. Phys. Lett. 67, 3957 (1995).CrossRefGoogle Scholar
5.Duszak, R., Tatarenko, S., Cibert, J., Saminadayar, K., and Deshayes, C.: (111) CdTe surface structure: A study by reflection high energy electron diffraction, x-ray photoelectron spectrosco-py, and x-ray photoelectron diffraction. J. Vac. Sci. Technol., A 9, 3025 (1991).CrossRefGoogle Scholar
6.Warekois, E.P., Lavine, M.C., Mariano, A.N., and Gatos, H.C.: Crystallographic polarity in the II–VI compounds. J. Appl. Phys. 33, 690 (1983).CrossRefGoogle Scholar
7.Solzbach, U. and Richter, H.J.: Sputter cleaning and dry oxidation of CdTe, HgTe, and Hg0.8Cd0.2Te surfaces. Surf. Sci. 97, 191 (1980).CrossRefGoogle Scholar
8.Zha, G., Jie, W., Zhang, W., Li, Q., and Xu, F.: Atomic and electronic structures of Cd0.96Zn0.04Te(110) surface. Chin. Phys. Lett. 22, 2357 (2005).Google Scholar
9.Zha, G., Jie, W., Tan, T., Li, P., Zhang, W., and Xu, F.: The atomic and electronic structure of CdZnTe (111) A surface. Chem. Phys. Lett. 427, 197 (2006).CrossRefGoogle Scholar
10.Cohen-Taguri, G., Levinshtein, M., Ruzin, A., and Goldfarb, I.: Real-space identification of the CZT (110) surface atomic structure by scanning tunneling microscopy. Surf. Sci. 602, 712 (2008).CrossRefGoogle Scholar
11.Zhang, H., Li, Y., Fang, R., Yang, F., and Xu, P.: Surface electronic structure of CdTe (111). Acta Physica Sinica 44, 280 (1995).Google Scholar
12.Biegelsen, D.K., Bringans, R.D., Northrup, J.E., and Swartz, L-E.: Reconstructions of (111) surfaces observed by scanning tunneling microscopy. Phys. Rev. Lett. 65, 452 (1990).CrossRefGoogle Scholar
13.Beerbom, M.M., Lagel, B., Cascio, A.J., Doran, B.V., and Schlaf, R.: Direct comparison of photoemission spectroscopy and in situ Kelvin probe work function measurements on indium tin oxide films. J. Electron. Spectrosc. Relat. Phenom. 152, 12 (2006).CrossRefGoogle Scholar