Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T22:04:24.343Z Has data issue: false hasContentIssue false

Reoxygenation of vacuum-annealed YBa2Cu3O6.9

Published online by Cambridge University Press:  31 January 2011

D. S. Ginley
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
P. J. Nigrey
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
E. L. Venturini
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
B. Morosin
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
J. F. Kwak
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Get access

Abstract

Vacuum-annealed samples of single-phase orthorhombic YBa2Cu3O6.9 have been reoxygenated. The vacuum-annealed material is tetragonal, semiconducting at room temperature, and shows no superconductivity. Upon annealing these samples in 640 Torr O2 at 200°C, a partial return of 90 K superconductivity is observed; complete restoration is achieved following 300°C anneals. Oxygen uptake in vacuum-annealed pellets follows an Arrhenius relation with an activation energy of −27 kcal/mol. Deoxygenation and reoxygenation does not seem to affect the structure of the grain interconnects in the material. The maximum oxygen uptake for vacuum-annealed material occurs at 450°C, while the maximum magnetic Meissner effect is observed following oxygen annealing at 350°C.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q., and Chu, C. W., Phys. Rev. Lett. 58, 908 (1987).CrossRefGoogle Scholar
2Takagi, H., Uchida, S., Kishio, K., Kitazawa, K., Fueki, K., and Tanaka, S., Jpn. J. Appl. Phys. 26, L320 (1987).CrossRefGoogle Scholar
3Sun, J. Z., Webb, D. J., Naito, M., Char, K., MHahn, . R., Hsu, J. W. P., Kent, A. D., Mitzi, D. B., Oh, B., Beasley, M. R., Geballe, T. H., Hammond, R. H., and Kapitulnik, A., Phys. Rev. Lett. 58, 1574 (1987).CrossRefGoogle Scholar
4Tarascon, J. M., Greene, L. H., McKinnon, W. R., and Hull, G. W., Phys. Rev. Lett, (to be published).Google Scholar
5Cava, R. J., Batlogg, B., Dover, R. B. Van and Rietman, E. A., Phys. Rev. Lett. 58, 408 (1987).CrossRefGoogle Scholar
6Cava, R. J., Batlogg, B., Dover, R. B. Van, Murphy, D. W., Sunshine, S., Siegrist, T., Remeika, J. P., Riefman, E. A., Zahuvak, S., and Espinosa, G. P., Phys. Rev. Lett, (to be published).Google Scholar
7Grant, P. M., Beyers, R. B., Engler, E. M., Lim, G., Parkin, S. S. P., Ramirez, M. L., Lee, V. Y., Nazzai, A., Vazquez, J. E., and Savoy, R. J., Phys. Rev. Lett, (to be published).Google Scholar
8Tarascon, M., McKinnon, W. R., Greene, L. H., Hull, G. W., Bagley, B. G., Vogel, E. M., and LePage, Y., in the Proceedings of the Symposium on High Temperature Superconductors, edited by Gubser, D. U. and Schluter, M. (Materials Research Society, Pittsburgh, PA, 1987), pp. 6587.Google Scholar
9Nakamura, K., Hatano, T., Matsushita, A., Oguchi, T., Aoki, H., Asada, Y., Ikeda, S., Matsumoto, T., and Ogawa, K., in Ref. 8, pp. 239242.Google Scholar
10Eatough, M. O., Ginley, D. S., Morosin, B., and L, E.. Venturini, Appl. Phys. Lett, (to be published).Google Scholar
11Kajitani, T., Oh-ishi, K., Kikuchi, M., Syono, Y., and Hirabayashi, M., Jpn. J. Appl. Phys. (to be published).Google Scholar
12Izumi, F., Asano, H., Ishigaki, T., Ono, A., and Okamura, F. P., Jpn. J. Appl. Phys. (to be published).Google Scholar
13Beno, M. A., Soderholm, L., Capone, D. W. II , Hinks, D. G., Jorgensen, J. D., Schuller, I. K., Seegre, C. A., Zhang, K., and Grace, J. D., Appl. Phys. Lett, (to be published).Google Scholar
14Somekh, R. E., Blamire, M. G., Barber, Z. H., Butler, K., James, J. H., Morris, G. W., Tomlinson, E. J., Schwarzenberger, A. P., Stobbs, W. M., and Evetts, T. E., Nature,326 (4), 857 (1987).CrossRefGoogle Scholar
15Beyers, R., Lim, G., Engler, E. M., Lee, V. Y., Ramirez, M. L., Savoy, R. J., Jacowitz, R. D., Shaw, T. M., Frase, K. G., Liniger, E. G., Clark, D. R., LaPlaca, S., Boehme, R., Tsuei, C. C., Park, S. I., Shafer, M. W., Gallagher, W. J., and Chandrashekhar, G. V., in Ref. 8, pp. 149152.Google Scholar
16Tarascon, J. M., Green, L. H., McKinnon, W. R., Hull, G. W., and Geballe, T. H., Science 235, 1375 (1987).CrossRefGoogle Scholar
17Morris, D. E., Scheven, U. M., Bourne, L. C., Cohen, M. L., Crommie, M. F., and Zettl, A., in Ref. 8, pp. 209213.Google Scholar
18Evetts, T. E., Somekh, R. E., Blamire, M. G., Barber, Z. H., Butler, K., James, J. H., Morris, G. W., Tomlinson, E. J., Schwarzenberger, A. P., and Stobbs, W. M., in Ref. 8, pp. 227229.Google Scholar
19Pinnirig of the original crystal orientation in transformations from a lower symmetry to a higher symmetry structure type and then back to the original symmetry has been observed in various systems, some with large volume changes; further, an increase in the mosaic spread of the single crystal is noted; see Johnson, R. T. and Morosin, B., High Temp. High Pressures 8, 31 (1976).Google Scholar
20Schrott, A. C., Park, S. I., and Tsuei, C. C., submitted to Phys. Rev. Lett.Google Scholar