Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T14:32:02.603Z Has data issue: false hasContentIssue false

REMO4 (RE = Y, Gd; M = Nb, Ta) phosphors from hybrid precursors: Microstructure and luminescence

Published online by Cambridge University Press:  31 January 2011

Xiuzhen Xiao
Affiliation:
Department of Chemistry, Tongji University, Shanghai 200092, China
Bing Yan*
Affiliation:
Department of Chemistry, Tongji University, Shanghai 200092, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this paper, YNbO4:0.05Tb3+ and GdTaO4:0.05Eu3+ phosphors were chosen to study the influence of the firing temperature on the phase and morphologies using novel modified in situ chemical coprecipitation technology. Results show that until the temperature reaches 1000 °C, the formation of YNbO4 and GdTaO4 were realized; with the increasing firing temperatures, those samples present better crystalline structure and better morphologies. The luminescent properties of Eu3+ and Tb3+ have shown that after calcinations at 1000 °C, the intensity of Eu3+ and Tb3+ increases strongly with the increasing of the calcinations temperature, while remaining relatively unchanged at the temperatures ranging between 600 and 800 °C. Furthermore, other rare earth ion doped GdTaO4 and Y1−xGdxTaO4:5 mol% Eu3+ with the different yttrium content were also synthesized after calcinating at the preferable temperature using the same method. The photoluminescence of Y1−xGdxTaO4:5 mol% Eu3+ revealed that the red emission intensity of Eu3+ increases with the increasing of gadolinium content, indicating that Gd ion plays an important role in the energy transfer process. Also, the concentration quenching has been studied in the GdTaO4:Eu3+/Dy3+ systems. Moreover, the characteristic emission lines of Tb3+, Pr3+, and Er3+ in GdTaO4 were observed, showing that the energy transfer process appears between host and those activators.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Brixner, L.H.: On the development and application of new highly efficient x-ray phosphors in Abstracts of Papers of the American Chemical Society,, 211:323-INOR Part 1, March 24, 1996Google Scholar
2Blasse, G., Bril, A.: Luminescence phenomena in compounds with fergusonite structure. J. Lumin. 3, 109 1970CrossRefGoogle Scholar
3Blasse, G.: Vibrational spectra of yttrium niobate and tantalate. J. Solid State Chem. 7, 169 1973CrossRefGoogle Scholar
4Ropp, R.C.: Luminescence and the Solid State Elsevier Science Amsterdam 1991Google Scholar
5Lammers, M.J.J., Blasse, G.: Energy transfer phenomena in Tb3+-activated gadolinium tantalite. Mater. Res. Bull. 19, 759 1984CrossRefGoogle Scholar
6Brixner, L.H., Chen, H.Y.: On the structural and luminescent properties of the M′ LnTaO4 rare earth tantalates. J. Electrochem. Soc. 130, 2435 1983CrossRefGoogle Scholar
7Molchanov, V.V., Zuev, M.G., Plyasova, L.M., Bogdanov, S.V.: Mechanochemical synthesis of yttrium and lanthanum tantalates. Inorg. Mater. 40, 73 2004CrossRefGoogle Scholar
8Zuev, M.G., Larionov, L.P.: Rare-Earth Compounds with Simple and Complex Group V Transition-Metal Anions: Synthesis, Composition, Structure, and Properties Ural. Otd. Ross. Akad. Nauk Yekaterinaburg 1999Google Scholar
9Yan, B., Huang, H.H.: In-situ sol-gel synthesis of luminescent Y2SiO5:Tb3+ nanophosphors derived from an assembly of hybrid precursors. J. Mater. Sci. 39, 3529 2004CrossRefGoogle Scholar
10Xiao, X.Z., Yan, B.: Synthesis and luminescent properties of novel RENbO4:Ln3+ (RE = Y, Gd, Lu; Ln = Eu, Tb) micro-crystalline phosphors. J. Non-Cryst. Solids 351, 3634 2005CrossRefGoogle Scholar
11Su, X.Q., Yan, B.: Matrix-inducing synthesis and luminescence of microcrystalline red phosphors YVO4: Pb2+, Eu3+, derived from the in situ coprecipitation of hybrid precursors. Inorg. Mater. 42, 59 2006CrossRefGoogle Scholar
12Chuai, X.H., Zhang, H.J., Li, F.S.: Luminescence properties of Eu(phen)2Cl3 doped in sol-gel-derived SiO2-PEG matrix. Mater. Lett. 46, 244 2000CrossRefGoogle Scholar
13Silva, R. Almeida, Tirao, G., Cusatis, C., Andreeta, J.P.: Growth and structural characterization of M-type GdTaO4 single crystal fiber. J. Cryst. Growth 274, 512 2005CrossRefGoogle Scholar
14Jehng, J.M., Wachs, I.E.: Structural chemistry and Raman spectra of niobium oxides. Chem. Mater. 3, 100 1991CrossRefGoogle Scholar
15Weitzel, H., Schröcke, H.Z.: Crystal structure refinement of euxenite, Y(Nb0,5Ti0,5)2O6, and M-fergusonite YNbO4. Kristallografiya 152, 69 1980CrossRefGoogle Scholar
16Yamaguchi, O., Matsui, K., Kawabe, T.: Crystallization and transformation of distorted tetragonal YNbO4. J. Am. Ceram. Soc. 68, C275 1985CrossRefGoogle Scholar
17Massabni, A.M.G., Montandon, G.J.M., Santos, M.A. Couto dos: Synthesis and luminescence spectroscopy of YNbO4 doped with Eu (III). Mater. Res. 1, 1 1998CrossRefGoogle Scholar
18Blasse, G., Dirksen, G.J., Brixner, L.H., Crawford, M.K.: Luminescence of materials based on LuTaO4. J. Alloys Compd. 209, 1 1994CrossRefGoogle Scholar
19Li, B., Gua, Z.N., Lin, J.H., Su, M.Z.: X-ray luminescence properties of rare-earth doped orthotantalate. Mater. Res. Bull. 35, 1921 2000CrossRefGoogle Scholar
20Gu, M., Xu, X., Liu, X.L., Qiu, L.Q., Zhang, R.: Preparation and characterization of GdTaO4:Eu3+ sol-gel luminescence thin films. J. Sol.-Gel Sci. Tech. 35, 193 2005CrossRefGoogle Scholar
21Yan, B., Xiao, X.Z.: Matrix induced synthesis of LaNbO4:Tb3+ phosphors by in situ composing hybrid precursors. Opt. Mater. 28, 498 2006CrossRefGoogle Scholar
22Su, X.Q., Yan, B., Huang, H.H.: In situ co-precipitation synthesis and luminescence of GdVO4: Eu3+ and YxGd1−xVO4:Eu3+ microcrystalline phosphors derived from the assembly of hybrid precursors. J. Alloys Compd. 399, 251 2005CrossRefGoogle Scholar
23Itoh, S., Toki, H., Tamura, K., Kataoka, F.: A new red-emitting phosphor, SrTiO3:Pr3+, for low-voltage electron excitation. Jpn. J. Appl. Phys A 38, 6387 1999CrossRefGoogle Scholar
24Yoshimatsu, H., Miura, Y., Osaka, A., Kawasaki, H., Ohmori, S.: Preparation of ZrO2–Al2O3 powder by thermal decomposition of gels produced from an aluminum chelate compound and zirconium butoxide. J. Mater. Sci. 31, 4975 1996CrossRefGoogle Scholar
25Carson, D., Forissier, M., Vedrine, J.C.: Kinetic study of the partial oxidation of propene and 2-methylpropene on different phases of bismuth molybdate and on a bismuth iron molybdate phase. J. Chem. Soc. Faraday. Conclusions Trans. I 80, 1017 1984CrossRefGoogle Scholar
26Rullens, F., Laschewsky, A., Devillers, M.L.: Bulk and thin films of bismuth vanadates prepared from hybrid materials made from an organic polymer and inorganic salts. Chem. Mater. 18, 771 2006CrossRefGoogle Scholar
27Wullens, H., Leroy, D., Devillers, M.: Preparation of ternary Bi–La and Bi–Pr oxides from polyaminocarboxylate complexes. Int. J. Inorg. Mater. 3, 309 2001CrossRefGoogle Scholar
28Alifanti, M., Baps, B., Blangenois, N., Naud, J., Grange, P., Delmon, B.: Characterization of CeO2–ZrO2 mixed oxides comparison of the citrate and sol-gel preparation methods. Chem. Mater. 15, 395 2003CrossRefGoogle Scholar
29Serra, O.A., Severino, V.P., Calefi, P.S., Cicillini, S.A.: The blue phosphor Sr2CeO4 synthesized by Pechini’s method. J. Alloys Compd. 323–324, 667 2001CrossRefGoogle Scholar
30Dhanaraj, J., Jagannathan, R., Kutty, T.R.N., Lu, C.H.: Photoluminescence characteristics of Y2O3:Eu3+ nanophosphors prepared using sol-gel thermolysis. J. Phys. Chem. B 105, 11098 2001CrossRefGoogle Scholar
31Pramanik, P.: Synthesis of nano particle of inorganic oxides by polymer matrix. Bull. Mater. Sci. 18, 819 1995CrossRefGoogle Scholar
32Zhang, Q.L., Guo, C.X., Shi, C.S.: Temperature effect of GdVO4:Eu3+ luminescence. Chin. J. Lumin. 21, 353 2001Google Scholar
33Huignard, A., Buissette, V., Franville, A.C., Gacoin, T., Boilot, J.P.: Emission processes in YVO4:Eu nanoparticles. J. Phys. Chem. B 107, 6754 2003CrossRefGoogle Scholar