Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T01:40:58.607Z Has data issue: false hasContentIssue false

Relationships among thermomechanical treatments, microstructure, and tensile properties of a near beta-titanium alloy: β-CEZ: Part II. Relationships between thermomechanical treatments and tensile properties

Published online by Cambridge University Press:  31 January 2011

L. Mora
Affiliation:
Laboratoire de Métallurgie Structurale (L.M.S.), U. R. A. CNRS no. 1107, ISMA, Bât. 413, Université de Paris-Sud, 91405 Orsay Cedex, France
C. Quesne
Affiliation:
Laboratoire de Métallurgie Structurale (L.M.S.), U. R. A. CNRS no. 1107, ISMA, Bât. 413, Université de Paris-Sud, 91405 Orsay Cedex, France
R. Penelle
Affiliation:
Laboratoire de Métallurgie Structurale (L.M.S.), U. R. A. CNRS no. 1107, ISMA, Bât. 413, Université de Paris-Sud, 91405 Orsay Cedex, France
Get access

Abstract

The tensile properties of the β-CEZ titanium alloy (Ti Al, 2Sn, 4Zr, 4Mo, 2Cr, 1Fe wt. %) have been investigated at intermediate temperatures as a function of the thermomechanical treatments. the strength and ductility have been correlated with the microstructural changes caused by the various heat treatments. It is found that the highest yield strength is associated with a structure containing a small area fraction, a small size, and a high density of primary α platelets (αp). Moreover, the size of the secondary α phase (αs) has been found to affect the yield strength. It is concluded that the ductility is enhanced by a high area fraction of αp platelets and is also sensitive to the density and the morphological orientation of the αp platelets. The interfaces between the αp and β phases play a dominant role in β-CEZ tensile behavior, and transgranular fracture is the main failure feature of this alloy.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Prandi, B., Alheritiere, E., Schwartz, F., and Thomas, M., Sixth World Conference on Titanium, Cannes, France, (1988), pp. 811818.Google Scholar
2.Mosser, P. E., Marnier, N., and Honnorat, Y., in Proceedings of the Seventh World Conference on Titanium, San Diego, CA, June 28–July 2, 1992, Titanium '92, Science and Technology, edited by Froes, F. H. and Caplan, J. L. (1993), pp. 13391346.Google Scholar
3.Penelle, R., Sixth World Conference on Titanium, Cannes, France (1988), pp. 14571465.Google Scholar
4.Saleh, Y. and Margolin, H., Acta Metall. 27, 535544 (1979).CrossRefGoogle Scholar
5.Lin, F. S., Starke, E. A. Jr, Chakrabortty, S. B., and Gysler, A., Metall. Trans. A 15, 12291246 (June 1984).CrossRefGoogle Scholar
6.Narendrnath, K. R. and Margolin, H., Metall. Trans. A 19, 25032512 (October 1988).CrossRefGoogle Scholar
7.Proceedings of “G. S. Titane” the colloque, CNRS, Aussois, September 25–27, 1991.Google Scholar
8.Angelier, C., Ph. D. Thesis, CNAM (April 9, 1993).Google Scholar
9.Henri, A., Ph. D. Thesis, Universite Paris VII (February 4, 1993.)Google Scholar
10.Smelser, R. E., Swedlow, J. L., and Williams, J. C., ASTM STP 651, 200 (1977).Google Scholar
11.Mora, L., Quesne, C., Haut, C., Servant, C., and Penelle, R., J. Mater. Res. 11, 8188 (1996).CrossRefGoogle Scholar
12.Blackburn, M. J. and Williams, J. C., Trans. AIME 239, 287288 (1967).Google Scholar
13.Fujii, H. and Suzuki, H. G., Sixth World Conference on Titanium, Cannes, France (1988), pp. 14891494.Google Scholar
14.Williams, J. C., Thomson, A. W., Rhodes, C. G., and Chesnutt, J. C., Titanium and Titanium Alloys 2, 467496 (1982).Google Scholar
15.Greenfield, M. A. and Margolin, H., Metall. Trans. 3, 26492659 (October 1972).Google Scholar
16.Zhi-Fang, and Chung-Sh, , Sixth World Conference on Titanium, Cannes, France (1988), pp. 14451450.Google Scholar
17.Kim, J., Kim, J.Y., and Cho, W. S., Metall. Trans A 24, 17851793 (August 1993).Google Scholar
18.Chesnutt, J. C. and Froes, H., Metall. Trans. A 8, 10131017 (1977).Google Scholar
19.Beranger, A. S., Ph.D. Thesis, UTC de Compiègne (December 20, 1991).Google Scholar
20.Froes, F. H., Chesnutt, J.C., Rhodes, C. G., and Williams, J. C., ASTM STP 561, 115153 (1978).Google Scholar
21.Banerjee, D., Mukherjee, D., Saha, R. L., and Bose, K., Metall. Trans. A 14, 413433 (1983).Google Scholar