Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-08T04:58:41.409Z Has data issue: false hasContentIssue false

The relationship between indentation and uniaxial creep in amorphous selenium

Published online by Cambridge University Press:  03 March 2011

W.H. Poisl
Affiliation:
Department of Materials Science and Engineering. University of Arizona, Tucson, Arizona 85721
W.C. Oliver
Affiliation:
Nano Instruments, Inc., 1001 Larson Drive, Oak Ridge, Tennessee 37831
B.D. Fabes
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721
Get access

Abstract

Ultralow load indentation techniques can be used to obtain time-dependent mechanical properties, termed indentation creep, of materials. However, the comparison of indentation creep data to that obtained during conventional creep testing is difficult, mainly due to the determination of the strain rate experienced by the material during indentation. Using the power-law creep equation and the equation for Newtonian viscosity as a function of stress and strain rate, a relationship between indentation strain rate, , and the effective strain rate occurring during the indentation creep process is obtained. Indentation creep measurements on amorphous selenium in the Newtonian viscous flow regime above the glass transition temperature were obtained. The data were then used to determine that the coefficient relating indentation strain rate to the effective strain rate is equal to 0.09, or .

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Brotzen, F. R., Int. Mater. Rev. 39(1), 24 (1994).CrossRefGoogle Scholar
2Oliver, W. C. and Pharr, CM., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
3Mayo, M. J. and Nix, W. D., Acta Metall. 36(8), 2183 (1988).CrossRefGoogle Scholar
4Raman, V. and Berriche, R., J. Mater. Res. 7, 627 (1992).CrossRefGoogle Scholar
5Lucas, B. N. and Oliver, W. C., in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W. D., Bravman, J. C., Arzt, E., and Freund, L.B. (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992), p. 337.Google Scholar
6Roebuck, B. and Almond, E. A., J. Mater. Sci. Lett. 1, 519 (1982).CrossRefGoogle Scholar
7Sargent, P. M. and Ashby, M. F., Mater. Sci. Technol. 8, 594 (1993).Google Scholar
8Chu, S. N. G. and Li, J.C.M., J. Mater. Sci. 12, 2200 (1977).CrossRefGoogle Scholar
9Chu, S. N. G. and Li, J.C.M., Mater. Sci. Eng. 39, 1 (1979).CrossRefGoogle Scholar
10Han, W-T. and Tomozawa, M., J. Am. Ceram. Soc. 73(12), 3626 (1990).CrossRefGoogle Scholar
11Keulen, N. M., J. Am. Ceram. Soc. 76(4), 904 (1993).CrossRefGoogle Scholar
12Tabor, D., The Hardness of Metals (Clarendon Press, Oxford, 1951).Google Scholar
13Pollock, H. M., Maugis, D., and Barquins, M., in Microindentation Techniques in Materials Science and Engineering, ASTM STP 889, edited by Blau, P.J. and Lawn, B.R. (ASTM, Philadelphia, PA, 1986), p. 47.Google Scholar
14Atkins, A. G., Silvério, A., and Tabor, D., J. Inst. Metals 94, 369 (1966).Google Scholar
15Mulhearn, T. O. and Tabor, D., J. Inst. Metals 89, 7 (1960).Google Scholar
16De La Torre, A., Adeva, P., and Aballe, M., J. Mater. Sci. 26, 4351 (1991).CrossRefGoogle Scholar
17Juhasz, A., Tasnadi, P., and Kovacs, I., J. Mater. Sci. Lett. 5, 35 (1986).CrossRefGoogle Scholar
18Muktepavel, F. O. and Manika, I., J. Mater. Sci. Lett. 8, 4 (1989).CrossRefGoogle Scholar
19Yurkov, A. L., J. Mater. Sci. Lett. 12, 767 (1993).CrossRefGoogle Scholar
20Walker, W. W., in The Science of Hardness Testing and its Research Applications, edited by Westbrook, J. H. and Conrad, H. (American Society for Metals, Metals Park, OH, 1973), p. 258.Google Scholar
21Mayo, M. J., Siegel, R. W., Narayanasamy, A., and Nix, W. D., J. Mater. Res. 5, 1073 (1990).CrossRefGoogle Scholar
22Li, W. B. and Warren, R., Acta Metall. et Mater. 41(10), 3065 (1993).CrossRefGoogle Scholar
23Li, W. B., Henshall, J. L., Hooper, R. M., and Easterling, K. E., Acta Metall. et Mater. 39(12), 3099 (1991).CrossRefGoogle Scholar
24LaFontaine, W. R., Yost, B., Black, R. D., and Li, C-Y., J. Mater. Res. 5, 2100 (1990).CrossRefGoogle Scholar
25Wu, T. W., Moshref, M., and Alexopoulos, P. S., Thin Solid Films 187, 295 (1990).CrossRefGoogle Scholar
26Frost, H. J. and Ashby, M. F., Deformation-Mechanism Maps (Pergamon Press, Oxford, 1982).Google Scholar
27Marsh, D. M., Proc. R. Soc. London A279, 420 (1964).Google Scholar
28Johnson, K. L., J. Mech. Phys. Solids 18, 115 (1970).CrossRefGoogle Scholar
29Mayo, M. J., Siegel, R. W., Liao, Y. X., and Nix, W. D., J. Mater. Res. 7, 973 (1992).CrossRefGoogle Scholar
30Yu, H. Y. and Li, J.C.M., J. Mater. Sci. 12, 2214 (1977).CrossRefGoogle Scholar
31Hill, R., Proc. R. Soc. London A436, 617 (1992).Google Scholar
32Bower, A. F., Fleck, N. A., Needleman, A., and Ogbonna, N., Proc. R. Soc. London A441, 97 (1993).Google Scholar
33Storåkers, B. and Larsson, P., J. Mech. Phys. Solids 42(2), 307 (1994).CrossRefGoogle Scholar
34Matthews, J. R., Acta Metall. 28, 311 (1980).CrossRefGoogle Scholar
35Timoshenko, S. P. and Goodier, J. N., Theory of Elasticity (McGraw-Hill, New York, 1970).Google Scholar
36Cukierman, M. and Uhlmann, D. R., J. Non-Cryst. Solids 12, 199 (1973).CrossRefGoogle Scholar
37Eisenberg, A. and Tobolsky, A. V., J. Polymer Sci. 61, 483 (1962).CrossRefGoogle Scholar
38Graham, L. J. and Chang, R., J. Appl. Phys. 36(10), 2983 (1965).CrossRefGoogle Scholar
39Kasap, S. O., Yannacopoulos, S., and Gundappa, P., J. Non-Cryst. Solids 111, 82 (1989).CrossRefGoogle Scholar
40Kasap, S. O., Aiyah, V., and Yannacopoulos, S., J. Phys. D 23, 553 (1990).CrossRefGoogle Scholar
41Stephens, R. B., J. Appl. Phys. 49(12), 5855 (1978).CrossRefGoogle Scholar
42Coughlin, M. C. and Wunderlich, B., J. Polymer Sci.: Polymer Phys. 11, 1735 (1973).Google Scholar
43Jenckel, V. E., Kolloid-Zeitschrift 84, 266 (1938).CrossRefGoogle Scholar
44Vedam, K., Miller, D., and Roy, R., J. Appl. Phys. 37(9), 3432 (1966).CrossRefGoogle Scholar
45Oliver, W. C., Lucas, B. N., and Pharr, G.M., in Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstmctures, edited by Nastasi, M., Parkin, D., and Gleiter, M. (Kluwer Academic, Dordrecht, The Netherlands, 1993), p. 417.Google Scholar
46Scholze, H. and Kreidl, N. J., in Class Science and Technology, Volume 3: Viscosity and Relaxation, edited by Uhlmann, D. R. and Kreidl, N. J. (Academic Press, Orlando, FL, 1986), p. 233.CrossRefGoogle Scholar
47Li, J. H. and Uhlmann, D. R., J. Non-Cryst. Solids 3, 127 (1970).CrossRefGoogle Scholar
48Simmons, J. H., Ochoa, R., Simmons, K. D., and Mills, J. J., J. Non-Cryst. Solids 105, 313 (1988).CrossRefGoogle Scholar
49Chiang, S. S., Marshall, D. B., and Evans, A. G., J. Appl. Phys. 53(1), 298 (1982).CrossRefGoogle Scholar
50Hirst, W. and Howse, G., Proc. R. Soc. London A311, 429 (1969).Google Scholar
51Bhattacharya, A. K. and Nix, W. D., Int. J. Solids and Structures 27(8), 1047 (1991).CrossRefGoogle Scholar