Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T23:55:42.219Z Has data issue: false hasContentIssue false

The relation between the undercooling and the growth rate of YBa2Cu3O6+x superconductive oxide

Published online by Cambridge University Press:  31 January 2011

Y. Nakamura
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 1–10–13 Shinonome, Koto-ku, Tokyo, 135, Japan
A. Endo
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 1–10–13 Shinonome, Koto-ku, Tokyo, 135, Japan
Y. Shiohara
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 1–10–13 Shinonome, Koto-ku, Tokyo, 135, Japan
Get access

Abstract

To clarify the effect of undercooling on the crystal growth of Y-123, the growth rate was measured with different undercoolings. The growth rate of the {100} face shows a quadratic dependence of undercooling, while that of the {001} face shows a linear dependence in the sample with nominal 123 composition. In the case with 211-rich composition, the growth rate of each face was larger than that compared with nominal 123 composition since the mass flux from 211 particle for peritectic reaction becomes large. Addition of excess 211 alters the undercooling dependence of Ra from quadratic to linear. It is considered that the entrapment of 211 particles into 123 crystals supplies step sources beside screw dislocations. The growth rate of the {001} face is larger than that of the {100} face up to 26° of undercooling.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jin, S., Tiefel, T., Sherwood, R., van Dover, R., Davis, H., Kammlott, G., and Fatnacht, R., Phys. Rev. B 37, 7850 (1988).CrossRefGoogle Scholar
2.Murakami, M., Morita, M., and Koyama, N., Jpn. J. Appl. Phys. 28, 1125 (1989).Google Scholar
3.Fujimoto, H., Murakami, M., Gotoh, S., Koshizuka, N., Oyama, T., Shiohara, T., and Tanaka, S., in Advances in Superconductivity II (Springer-Verlag, Tokyo, 1990), p. 285.CrossRefGoogle Scholar
4.Izumi, T., Nakamura, Y., and Shiohara, Y., J. Mater. Res. 7, 1621 (1992).Google Scholar
5.Nakamura, Y., Izumi, T., Shiohara, Y., and Tanaka, S., J. Jpn. Inst. Metal, 56, 810 (1992).CrossRefGoogle Scholar
6.Cima, M. J., Flemings, M. C., Figueredo, A. M., Nakade, M., Ishii, H., Brody, H. D., and Haggerty, J.S., J. Appl. Phys. 72, 179 (1992).Google Scholar
7.Bateman, C. A., Zhang, L., Chan, H. M., and Harmer, M.P., J. Am. Ceram. Soc. 75, 1281 (1992).Google Scholar
8.Izumi, T., Nakamura, Y., and Shiohara, Y., J. Cryst. Growth 128, 757 (1993).CrossRefGoogle Scholar
9.Nakamura, Y., Izumi, T., and Shiohara, Y., in Advances in Superconductivity V (Springer-Verlag, Tokyo, 1993), p. 585.Google Scholar
10.Goyal, A., Alexander, K. B., Kroeger, D. M., Funkenbusch, P. D., and Burns, S. J., Physica C 210, 197 (1993).CrossRefGoogle Scholar
11.Schmitz, G. J., Laakmann, J., Wolters, Ch., Rex, S., Gawalek, W., Habisreuther, T., Bruchlos, G., and Görnert, P., J. Mater. Res. 8, 2774 (1993).Google Scholar
12.Müller, D. and Freyhardt, H. C., Physica C 242, 283 (1995).CrossRefGoogle Scholar
13.Ohtsu, K., Yamada, Y., Izumi, T., Nakamura, Y., and Shiohara, Y., in Advances in Superconductivity V (Springer-Verlag, Tokyo, 1993), p. 581.CrossRefGoogle Scholar
14.Izumi, T., Ohtsu, K., Nakamura, Y., and Shiohara, Y., in Advances in Superconductivity V (Springer-Verlag, Tokyo, 1993), p. 577.CrossRefGoogle Scholar
15.Aselage, T. and Keefer, K., J. Mater. Res. 3, 1279 (1988).Google Scholar
16.Maeda, M., Kadoi, M., and Ikeda, T., Jpn. J. Appl. Phys. 28, 1417 (1989).Google Scholar
17.Lee, B. J. and Lee, D. N., J. Am. Ceram. Soc. 74, 78 (1911).CrossRefGoogle Scholar
18.Krauns, Ch., Sumida, M., Tagami, M., Yamada, Y., and Shiohara, Y., Z. Phys. B 96, 207 (1994).CrossRefGoogle Scholar
19.Bennema, P. and Gilmer, G. H., Crystal Growth: An introduction, edited by Hartman, P. (North-Holland Pub. Co., Amsterdam, 1973), p. 263.Google Scholar
20.Yamada, Y., Nakamura, M., Shiohara, Y., and Tanaka, S., J. Cryst. Growth 148, 241 (1995).CrossRefGoogle Scholar
21.Nakamura, Y. and Shiohara, Y., submitting to J. Mater. Res.Google Scholar
22.Sun, B. N., Hartman, P., Woensdregt, C. F., and Schmid, H., J. Cryst. Growth 100, 605 (1990).CrossRefGoogle Scholar
23.Nakamura, Y., Furuya, K., Izumi, T., and Shiohara, Y., J. Mater. Res. 9, 1350 (1994).Google Scholar
24.Sadowski, W. and Scheel, H. J., J. Less-Comm. Metals 150, 219 (1989).Google Scholar
25.Schönmann, K., Seebacher, B., and Andnes, K., J. Less-Comm. Metals 164 / 165, 169 (1990).Google Scholar
26.Takei, H., Asaoka, H., Iye, Y., and Takeya, H., Jpn. J. Appl. Phys. 30, L1102 (1990).Google Scholar
27.Liang, R., Dosanjh, P., Baar, D. A., Carolan, J. F., and Hardy, W. N., Physica C 195, 51 (1992).CrossRefGoogle Scholar
28.Asaoka, H., Takei, H., Iye, Y., Tamura, M., Kinoshita, M., and Takeya, H., Jpn. J. Appl. Phys. 32, 1091 (1993).CrossRefGoogle Scholar