Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T01:21:39.930Z Has data issue: false hasContentIssue false

Reduction of intrinsic stresses during the chemical vapor deposition of diamond

Published online by Cambridge University Press:  31 January 2011

Sumit Nijhawan
Affiliation:
Division of Engineering, Brown University, Providence, Rhode Island 02912
Susan M. Jankovsky
Affiliation:
Division of Engineering, Brown University, Providence, Rhode Island 02912
Brian W. Sheldon
Affiliation:
Division of Engineering, Brown University, Providence, Rhode Island 02912
Barbara L. Walden
Affiliation:
Physics Department, Trinity College, Hartford, Connecticut 06106
Get access

Abstract

Intrinsic stresses which arise during the chemical vapor deposition (CVD) of diamond were controlled by multistep processing. Film stresses (thermal and intrinsic) were measured with the bending plate method. The thermal stresses are compressive and arise due to the mismatch in thermal expansion coefficient between the film and substrate. The dominant intrinsic stresses are tensile and evolve during the deposition process. These stresses increase with deposition time. An intermediate step consisting of annealing the film when the diamond crystallites are only partially coalesced reduces the intrinsic stress by more than 50%. Annealing at longer growth times (i.e., after complete coalescence) does not produce large reductions in intrinsic stress. Our results are consistent with stress generation due to the formation of nonequilibrium grain boundary structures. The intermediate annealing step does not produce a large, direct stress reduction; instead, it alters the film microstructure in some subtle way which reduces stress generation during subsequent growth.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Windischmann, H., Collins, R. W., and Cavese, M., J. Non-Cryst. Solids 85, 261 (1986).CrossRefGoogle Scholar
2.Schafer, L., Jiang, X., and Klages, C., Applications of Diamond and Related Materials edited by Tzeng, Y., Yoshikawa, M., Murokawa, M., and Feldman, A. (Elsevier, New York, 1991), p. 121.Google Scholar
3.Windischmann, H. and Epps, G. F., J. Appl. Phys. 69, 2231 (1991).CrossRefGoogle Scholar
4.Schwarzbach, D., Haubner, R., and Lux, B., Diamond Relat. Mater. 3, 757 (1994).CrossRefGoogle Scholar
5.Angus, J.C., Hayman, C., and Hoffman, R.W., Proc. SPIE 969, 2 (1988).CrossRefGoogle Scholar
6.Baglio, J. A., Farnsworth, B. C., Hankin, S., Hamill, G., and O'Neil, D., Thin Solid Films 212, 180 (1992).CrossRefGoogle Scholar
7.Windischmann, H. and Gray, K. J., Diamond Relat. Mater. 4, 837 (1995).CrossRefGoogle Scholar
8.Bergman, L. and Nemanich, R. J., J. Appl. Phys. 78, 6709 (1995).CrossRefGoogle Scholar
9.Burton, N. C., Steeds, J. W., Meadon, G. M., Shreter, Y. G., and Butler, J. E., Diamond Relat. Mater. 4, 1222 (1995).CrossRefGoogle Scholar
10.von Kaenel, Y., Stiegler, J., Michler, J., and Blank, E., J. Appl. Phys. 81, 1726 (1997).CrossRefGoogle Scholar
11.Bergman, L., Stoner, B. R., Turner, K. F., Glass, J. T., and Nemanich, J., J. Appl. Phys. 73, 3951 (1993).CrossRefGoogle Scholar
12.Rats, D., Bimbault, L., Vandenbulcke, L., Herbin, R., and Badawi, K. F., J. Appl. Phys. 78, 4994 (1995).CrossRefGoogle Scholar
13.Werninghaus, T., Friedrich, M., and Zahn, D. R. T., Phys. Status Solidi A 154, 269 (1996).CrossRefGoogle Scholar
14.Kuo, C. T., Lin, C. H., and Lien, H. M., Thin Solid Films 291, 254 (1996).CrossRefGoogle Scholar
15.Van Damme, N. S., Nagle, D. C., and Winzer, S. R., Appl. Phys. Lett. 58, 2919 (1990).CrossRefGoogle Scholar
16.Lee, Y. H., Bachmann, K. J., Glass, J. T., LeGrice, Y. M., and Nemanich, J., Appl. Phys. Lett. 57, 1916 (1991).CrossRefGoogle Scholar
17.Sails, S. R., Gardiner, D. J., Bowden, M., Savage, J., and Haq, S., Appl. Phys. Lett. 64, 2248 (1994).Google Scholar
18.Prawer, S., Nugent, K. W., and Weiser, P. S., Appl. Phys. Lett. 65, 2248 (1994).CrossRefGoogle Scholar
19.Doerner, M. and Nix, W., CRC Crit. Rev. Solid State Mater. Sci. 14, 225 (1988).CrossRefGoogle Scholar
20.Kohyama, M., Yamamoto, R., and Doyama, M., Solid State Physics 136, 31 (1986).CrossRefGoogle Scholar
21.Lambrecht, W. R. L., Lee, C. H., Segall, B., Angus, J.C., Li, Z., and Sunkara, M., Nature (London) 364, 607 (1992).CrossRefGoogle Scholar
22.Zhang, Y., Zhang, F., and Chen, G., J. Appl. Phys. 76 (12), 7805 (1994).CrossRefGoogle Scholar
23.Hoffman, R.W., Surf. Interface Anal. 3, 62 (1981).CrossRefGoogle Scholar
24.Harris, S. J. and Goodwin, D.G., J. Phys. Chem. 97, 23 (1993).CrossRefGoogle Scholar
25.Hetherington, A. V., Wort, C. J. H., and Southworth, P., J. Mater. Res. 5, 1591 (1990).CrossRefGoogle Scholar
26.Wild, Ch., Herres, N., and Koidl, P., J. Appl. Phys. 68, 973 (1990).CrossRefGoogle Scholar
27.Sheldon, B.W., Csencsits, R., Rankin, J., Boekenhauer, R. E., and Shigesato, Y., J. Appl. Phys. 75, 5001 (1994).CrossRefGoogle Scholar
28.Kobayashi, K., Karasawa, S., and Watanabe, T., J. Cryst. Growth 99, 1211 (1990).CrossRefGoogle Scholar
29.Hollman, P., Alahelisten, A., Olsson, M., and Hogmark, S., Thin Solid Films 270, 137 (1995).CrossRefGoogle Scholar
30.Choi, S. K., Jung, D. Y., and Choi, H.M., J. Vac. Sci. Technol. A 14, 165 (1996).CrossRefGoogle Scholar