Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T16:42:57.076Z Has data issue: false hasContentIssue false

Redox and Electrocatalytic Activity of Ni Ion-Implanted Ti

Published online by Cambridge University Press:  03 March 2011

M.T. Pham
Affiliation:
Forschungszentrum Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01314 Dresden, Germany
M.F. Maitz
Affiliation:
Forschungszentrum Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01314 Dresden, Germany
H. Reuther
Affiliation:
Forschungszentrum Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01314 Dresden, Germany
E. Richter
Affiliation:
Forschungszentrum Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01314 Dresden, Germany
W. Matz
Affiliation:
Forschungszentrum Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01314 Dresden, Germany
A. Muecklich
Affiliation:
Forschungszentrum Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01314 Dresden, Germany
N. Shevchenko
Affiliation:
Forschungszentrum Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01314 Dresden, Germany
F. Prokert
Affiliation:
Forschungszentrum Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01314 Dresden, Germany
Get access

Abstract

Ni-Ti surface alloy was prepared by ion-implanting Ni into Ti. The surface film was amorphous having a Ni surface content of 10–40 at.%. The material was compared with a Ni-Ti bulk alloy (44.08:55.9) regarding their redox and electrocatalytic behavior in NaOH by cyclic voltammetry. The surface was characterized by x-ray photoelectron spectroscopy, x-ray and electron diffraction, transmission electron microscopy, and atomic force microscopy. The ion-implanted material revealed an enhanced activity toward the redox conversion of Ni(OH)2 ↔ NiOOH and the anodic oxidation of glucose. The effect is discussed considering the enhanced generation of active Ni surface sites from amorphous Ni and the stabilization of higher valence Ni by Ti.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Luo, P.F., Kuwana, T., Paul, D.K. and Sherwood, P.M.A.: Anal. Chem. 68, 3330 (1996).CrossRefGoogle Scholar
2Luo, P.F. and Kuwana, T.: Anal. Chem. 66, 2775 (1994).CrossRefGoogle Scholar
3McBreen, J. in Modern Aspects of Electrochemistry, edited by White, R., Bockris, J., and Conway, B., (Plenum Press, New York, 1990), 21, Chap. 2Google Scholar
4Carone, J.A. in Handbook of Batteries, edited by Linden, D. (McGraw-Hill, Inc., Toronto, 1994), Chap. 28Google Scholar
5Nikolov, I., Darkaoui, R., Zhecheva, E.E., Stoyanova, R., Dimitrov, N. and Vitanov, T.: J. Electroanal. Chem. 429, 157 (1997).CrossRefGoogle Scholar
6Schumacher, L.C., Holzhueter, I.B., Hill, I.R. and Dignam, M.J.: Electrochim. Acta. 35, 975 (1990).CrossRefGoogle Scholar
7Chen, J., Bradhurst, D.H., Dou, S.X. and Liu, H.K.: J. Electrochem. Soc. 146, 3606 (1999).CrossRefGoogle Scholar
8Maruyama, T. and Arai, S.: J. Electrochem. Soc. 143, 1383 (1996).CrossRefGoogle Scholar
9Titz, A. and Buchberger, W.: Fresenius J. Anal. Chem. 339, 57 (1991).Google Scholar
10Marioli, J.M., Luo, P.F. and Kuwana, T.: Anal. Chim. Acta. 282, 571 (1993).CrossRefGoogle Scholar
11Casella, G. and Gatta, M.: J. Electrochem. Soc. 149 B465 (2002).CrossRefGoogle Scholar
12Goto, M., Miyahara, H. and Ishii, D.: J. Chromatogr. 515, 213 (1990).CrossRefGoogle Scholar
13Fleischmann, M., Korinek, K. and Pletcher, D.: Electroanal. Chem. 31, 39 (1971).CrossRefGoogle Scholar
14Kreysa, G. and Hakansson, B.: J. Electroanal. Chem. 201, 61 (1986).CrossRefGoogle Scholar
15Archer, M.D., Corke, C.C. and Harji, B.H.: Electrochim. Acta. 32, 13 (1987).CrossRefGoogle Scholar
16Alemu, H. and Jüttner, K.: Electrochim. Acta. 33, 1101 (1988).CrossRefGoogle Scholar
17Lian, K., Thorpe, S.J. and Kirk, D.W.: Electrochim. Acta. 37, 169 (1992).CrossRefGoogle Scholar
18Brossard, L., Schulz, R. and Huot, J.Y.: Int. J. Hydrogen Energy. 13, 251 (1988).CrossRefGoogle Scholar
19Kupa, J. and Budniok, A.: J. Appl. Electrochem. 20, 1015 (1990).CrossRefGoogle Scholar
20Yoon, C. and Cocke, D.L.: J. Non-Cryst. Solids. 79, 217 (1986).CrossRefGoogle Scholar
21 I.G. Casella, E. Desimoni, and T.R.I. Castaldi: Anal. Chim. Acta 248, 117 (191).CrossRefGoogle Scholar
22Zadeli, J.M., Marioli, J. and Kuwana, T.: Anal. Chem. 63, 649 (1991).CrossRefGoogle Scholar
23Nastasi, M. and Mayer, J.M.: Mater. Sci. Eng. R21, 1 (1994).CrossRefGoogle Scholar
24 Ion Implantation Metallurgy, edited by Preece, C.M. and Hirvonen, J.K. (TMS-AIME, New York, 1980).Google Scholar
25Pham, M.T., Maitz, M.F., Reuther, H., Richter, E., Matz, W., Muecklich, A. and Prokert, F.: J. Mater. Res. 19, 439 (2004).CrossRefGoogle Scholar
26Villegas, I., Ehlers, C.B. and Stickney, J.: J. Electrochem. Soc. 137, 3143 (1990).CrossRefGoogle Scholar
27Arfelli, M., Ingo, G.M., Mattogno, G. and Beccarla, A.M.: Surf. Interface Anal. 16, 299 (1990).CrossRefGoogle Scholar
28Fontaine, R., Feve, L., Buvat, J.P., Schoeller, C. and Caillat, R.: J. Microsc. Spectrosc. Electron. 14, 453 (1989).Google Scholar
29Marcus, P. and Olefjord, I.: Surf. Interface Anal. 4, 29 (1982).CrossRefGoogle Scholar
30McIntyre, N. and Cook, M.: Anal. Chem. 47, 2208 (1975).CrossRefGoogle Scholar
31Scrocco, M.: Chem. Phys. Lett. 61, 453 (1979).CrossRefGoogle Scholar
32Fontaine, R., Feve, L., Buvat, J.P., Schoeller, C. and Caillat, R.: J. Microsc. Spectrosc. Electron. 14, 453 (1989).Google Scholar
33Ansell, R.O., Dickinson, T., Povery, A.F. and Sherwood, P.M.A.: : J. Electroanal. Chem. 10, 69 (1979).CrossRefGoogle Scholar
34Moroney, L.M., Smart, P.S.C. and Roberts, M.W.: J. Chem. Soc. Farady Trans. 79, 1769 (1983).CrossRefGoogle Scholar
35Bode, H., Dehmelt, K. and Witte, J.: Electrochim. Acta. 11, 1079 (1966).CrossRefGoogle Scholar
36Guzman, R.S. Schrebler, Vilche, J.R. and Arvia, A.J.: J. Electrochem. Soc. 125, 1578 (1978).CrossRefGoogle Scholar
37Hahn, F., Beden, B., Croissant, M.J. and Lamy, C.: Electrochim. Acta. 31, 335 (1986).CrossRefGoogle Scholar
38Weninger, J.L. and Breiter, M.W.: J. Electrochem. Soc. 110, 484 (1963).CrossRefGoogle Scholar
39Corrigan, D.A. and Bendert, R.M.: J. Electrochem. Soc. 136, 723 (1989).CrossRefGoogle Scholar
40Manoharan, R. and Goodenough, J.B.: J. Mater. Chem. 2, 875 (1992).CrossRefGoogle Scholar
41Pankuch, M., Bell, R. and Melendres, C.A.: Electrochim. Acta. 38, 2777 (1995).CrossRefGoogle Scholar
42Lian, K., Thorpe, S.J. and Kirk, D.W.: Electrochim. Acta. 37, 2029 (1992).CrossRefGoogle Scholar
43Hoar, J.P.: The Electrochemistry of Oxygen (Interscience, New York, 1968), p. 277Google Scholar
44Conway, B.E. and Bourgault, P.L.: Can. J. Chem. 40, 1690 (1960).CrossRefGoogle Scholar
45 Ion Implantation in Metals, edited by Ashworth, V., Grant, W.A., and Proctor, R.P.M. (Pergamon, Oxford, 1982)Google Scholar
46Moine, P., Riviere, J.P., Ruault, M.O., Chaumont, J., Pelton, A. and Sinclair, R.: Nucl. Instr. and Meth. B 7, 254 (1984).Google Scholar
47Mori, H., Fujita, H. and Makoto, M.: Jpn. J. Appl. Phys. 22 L94 (1983).Google Scholar