Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T08:04:09.719Z Has data issue: false hasContentIssue false

Reaction study of cobalt and silicon nitride

Published online by Cambridge University Press:  03 March 2011

Tue Nguyen
Affiliation:
IBM Semiconductor Research Development Center, Hopewell Junction, New York 12533
Herbert L. Ho
Affiliation:
IBM Semiconductor Research Development Center, Hopewell Junction, New York 12533
David E. Kotecki
Affiliation:
IBM Semiconductor Research Development Center, Hopewell Junction, New York 12533
Tai D. Nguyen
Affiliation:
Center for X-ray Optics, Lawrence Berkeley Laboratory, and Department of Materials Science and Mineral Engineering, University of California, Berkeley, California 94720
Get access

Abstract

The interaction of cobalt (Co) and low-pressure chemical-vapor-deposited silicon nitride (LPCVD Si3N4) during anneals from 200 °C−1000 °C in vacuum, Ar, and Ar–H2 ambient (95% Ar and 5% H2) has been studied. After the anneals, reduction of Si3N4 by Co to form cobalt silicide and cobalt nitride phases has been observed. Reduction of Si3N4 initially occurs at 600 °C; however, gross physical damage occurs at temperatures of ∼900 °C in Ar. The addition of hydrogen to the ambient enhances the onset of physical damage to the nitride film by as much as 200 °C. Mechanisms governing the Co/Si3N4 reaction have been proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lu, C. Y., Sung, J. J., Liu, R., Tsai, N., Singh, R., Hillenius, S. J., and Kirsch, H. C., IEEE Trans. Elec. Dev. 38, 246 (1991).CrossRefGoogle Scholar
2Broadbent, E. K., Irani, R. F., Morgan, A. E., and Maillot, P., IEEE Trans. Elec. Dev. 36, 2440 (1989).CrossRefGoogle Scholar
3Morgan, A. E., Broadbent, E. K., Ritz, K. N., Sadana, D. K., and Burrow, B. J., J. Appl. Phys. 64, 344 (1988).CrossRefGoogle Scholar
4Barbour, J. C., Kuiper, A.E.T., Willemsen, M.F.C., and Reader, A.H., Appl. Phys. Lett. 50, 953 (1987).CrossRefGoogle Scholar
5Ho, V. Q. and Poulin, D., J. Vac. Sci. Technol. A 5, 1396 (1987).CrossRefGoogle Scholar
6Parekh, N. S., Roede, H. R., Bos, A. A., Jonkers, A. G.M., and Verhaar, R.D.J., IEEE Trans. Elec. Dev. 38, 88 (1991).CrossRefGoogle Scholar
7Burte, E. P. and Ye, M., J. Mater. Res. 6, 1892 (1991).CrossRefGoogle Scholar
8Liu, R., Williams, D. S., and Lynch, W. T., IEDM Tech. Dig. 58 (1986).Google Scholar
9Probst, V., Schaber, H., Mitwalski, A., Kabza, H., Hoffman, B., Maex, K., and van den Hove, L., J. Appl. Phys. 70, 693 (1991).CrossRefGoogle Scholar
10Pretorius, R., Harris, J. M., and Nicolet, M. A., Solid State Electron. 21, 667 (1978).CrossRefGoogle Scholar
11Chen, W. D., Cui, Y. D., and Hsu, C. C., J. Appl. Phys. 69, 7612 (1991).CrossRefGoogle Scholar
12Ho, H. L., Nguyen, T., Chang, J. C., Machesney, B., and Geiss, P., J. Mater. Res. 8, 467 (1993).CrossRefGoogle Scholar
13Edelman, F., Gutmanas, E. Y., and Brener, R., Vacuum 41, 1268 (1990).CrossRefGoogle Scholar
14JCPDS card files: 16-116 and 38-1449.Google Scholar
15Kubaschewski, O. and Hopkins, B. E., Oxidation of Metals and Alloys, 2nd ed. (Butterworths, London, 1962), p. 13.Google Scholar
16Robertson, J., Philos. Mag. B 64, 47 (1991).CrossRefGoogle Scholar
17Lambrecht, W. R. L., Christensen, N. E., and Blochl, P., Phys. Rev. B 36, 2493 (1987).CrossRefGoogle Scholar
18Weaver, J. H., Franciosi, A., and Moruzzi, V. L., Phys. Rev. B 29, 3293 (1984).CrossRefGoogle Scholar
19Kuiper, A. E. T., Willemsen, M. F. C, and van IJzendoorn, L. J., Appl. Phys. Lett. 53, 2149 (1988).CrossRefGoogle Scholar
20Kuiper, A. E. T., Willemsen, M. F. C, Mulder, J. M. L, Oude Elferink, J. B., Habraken, F. H. P. M., and van der Weg, W. F., J. Vac. Sci. Technol. B 7, 455 (1989).CrossRefGoogle Scholar