Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T17:37:06.907Z Has data issue: false hasContentIssue false

Rapid low-pressure plasma sintering of inkjet-printed silver nanoparticles for RFID antennas

Published online by Cambridge University Press:  09 May 2013

Franziska M. Wolf
Affiliation:
Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, 07743 Jena, Germany; and Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, 07743 Jena, Germany
Jolke Perelaer*
Affiliation:
Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, 07743 Jena, Germany; andDutch Polymer Institute (DPI), 5600 MB Eindhoven, The Netherlands
Steffi Stumpf
Affiliation:
Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, 07743 Jena, Germany; and Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, 07743 Jena, Germany
Dirk Bollen
Affiliation:
Agfa-Gevaert N.V., B-2640 Mortsel, Belgium
Frank Kriebel
Affiliation:
SMARTRAC TECHNOLOGY Dresden GmbH, D-01099 Dresden, Germany
Ulrich S. Schubert*
Affiliation:
Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, 07743 Jena, Germany; andDutch Polymer Institute (DPI), 5600 MB Eindhoven, The Netherlands
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

A rapid low-pressure plasma sintering process of inkjet-printed silver nanoparticles is reported, yielding a conductivity of 11.4% of bulk silver within 1 min of plasma exposure and a final conductivity up to 40% of bulk silver for longer sintering times. The maximum processing temperature did not exceed 70 °C, which enabled the use of cost-effective polyethylene terephthalate (PET) foils. Fully functional radio-frequency identification (RFID) tags were prepared with inkjet-printed antennas, which showed similar results as screen-printed devices. The inkjet-printed antennas require significantly less materials, hence thinner layers, than the screen-printed references.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Huang, D., Liao, F., Molesa, S., Redinger, D., and Subramanian, V.: Plastic-compatible low resistance printable gold nanoparticle conductors for flexible electronics. J. Electrochem. Soc. 150(7), G412 (2003).CrossRefGoogle Scholar
Fuller, S.B., Wilhelm, E.J., and Jacobson, J.M.: Inkjet printed nanoparticle microelectromechanical systems. J. Microelectromech. Syst. 11(1), 54 (2002).CrossRefGoogle Scholar
Reinhold, I., Hendriks, C.E., Eckardt, R., Kranenburg, J.M., Perelaer, J., Baumann, R.R., and Schubert, U.S.: Argon plasma sintering of inkjet printed silver tracks on polymer substrates. J. Mater. Chem. 19(21), 3384 (2009).CrossRefGoogle Scholar
Søndergaard, R.R., Hösel, M., and Krebs, F.C.: Roll-to-roll fabrication of large area functional organic materials. J. Polym. Sci., Part B: Polym. Phys. 51(1), 16 (2013).CrossRefGoogle Scholar
Shin, D.Y., Lee, Y., and Kim, C.H.: Performance characterization of screen printed radio frequency identification antennas with silver nanopaste. Thin Solid Films 517(21), 6112 (2009).CrossRefGoogle Scholar
Kowalik, T., Worch, S., Hartwig, A., and Joachimi, H.: Conductive UV curable adhesives for printed RFID antenna structures. Macromol. Symp. 254(1), 300 (2007).CrossRefGoogle Scholar
Perelaer, J., Smith, P.J., Mager, D., Soltman, D., Volkman, S.K., Subramanian, V., Korvink, J.G., and Schubert, U.S.: Printed electronics: The challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J. Mater. Chem. 20(39), 8446 (2010).CrossRefGoogle Scholar
Smith, P.J., Shin, D.Y., Stringer, J.E., Derby, B., and Reis, N.: Direct inkjet printing and low temperature conversion of conductive silver patterns. J. Mater. Sci. 41(13), 4153 (2006).CrossRefGoogle Scholar
Kamyshny, A., Steinke, J., and Magdassi, S.: Metal-based inkjet inks for printed electronics. Open Appl. Phys. J. 4, 19 (2011).CrossRefGoogle Scholar
Perelaer, J., de Laat, A.W.M., Hendriks, C.E., and Schubert, U.S.: Inkjet printed silver tracks: Low temperature curing and thermal stability investigation. J. Mater. Chem. 18(27), 3209 (2008).CrossRefGoogle Scholar
Gamerith, S., Klug, A., Scheiber, H., Scherf, U., Moderegger, E., and List, E.J.W.: Direct inkjet printing of Ag-Cu nanoparticle and Ag-precursor based electrodes for OFET applications. Adv. Funct. Mater. 17(16), 3111 (2007).CrossRefGoogle Scholar
Goeke, R.S. and Datye, A.K.: Model oxide supports for studies of catalyst sintering at elevated temperatures. Top. Catal. 46(1–2), 3 (2007).CrossRefGoogle Scholar
Perelaer, J. and Schubert, U.S.: Novel approaches for low temperature sintering of inkjet-printed inorganic nanoparticles for roll-to-roll (R2R) applications. J. Mater. Res. 28 (2013). doi: 10.1557/jmr.2012.419.CrossRefGoogle Scholar
Kang, S-J.L.: Sintering: Densification, Grain Growth, and Microstructure, 1st ed. (Elsevier Butterworth-Heinemann, Burlington, 2005), pp. 3777.Google Scholar
Lee, H.H., Chou, K.S., and Huang, K.C.: Inkjet printing of nanosized silver colloids. Nanotechnology 16(10), 2436 (2005).CrossRefGoogle ScholarPubMed
Perelaer, J., Jani, R., Grouchko, M., Kamyshny, A., Magdassi, S., and Schubert, U.S.: Plasma and microwave flash sintering of a tailored silver nanoparticle ink, yielding 60% bulk conductivity on cost-effective polymer foils. Adv. Mater. 24(29), 3993 (2012).CrossRefGoogle ScholarPubMed
Kim, H-S., Dhage, S.R., Shim, D-E., and Hahn, H.T.: Intense pulsed light sintering of copper nanoink for printed electronics. Appl. Phys. A 97(4), 791 (2009).CrossRefGoogle Scholar
Grouchko, M., Kamyshny, A., Mihailescu, C.F., Anghel, D.F., and Magdassi, S.: Conductive inks with a "built-in" mechanism that enables sintering at room temperature. ACS Nano 5(4), 3354 (2011).CrossRefGoogle ScholarPubMed
Tang, Y., He, W., Zhou, G., Wang, S., Yang, X., Tao, Z., and Zhou, J.: A new approach causing the patterns fabricated by silver nanoparticles to be conductive without sintering. Nanotechnology 23, 355304 (2012).CrossRefGoogle ScholarPubMed
Hosel, M. and Krebs, F.C.: Large-scale roll-to-roll photonic sintering of flexo printed silver nanoparticle electrodes. J. Mater. Chem. 22(31), 15683 (2012).CrossRefGoogle Scholar
Angmo, D., Larsen-Olsen, T.T., Jørgensen, M., Søndergaard, R.R., and Krebs, F.C.: Roll-to-roll inkjet printing and photonic sintering of electrodes for ITO free polymer solar cell modules and facile product integration. Adv. Energy Mater. (2012). doi: 10.1002/aenm.201200520.Google Scholar
Ko, S.H., Pan, H., Grigoropoulos, C.P., Luscombe, C.K., Frechet, J.M.J., and Poulikakos, D.: Air stable high resolution organic transistors by selective laser sintering of inkjet printed metal nanoparticles. Appl. Phys. Lett. 90(14) (2007).CrossRefGoogle Scholar
Bieri, N.R., Chung, J., Poulikakos, D., and Grigoropoulos, C.P.: Manufacturing of nanoscale thickness gold lines by laser curing of a discretely deposited nanoparticle suspension. Superlattices Microstruct. 35(3–6), 437 (2004).CrossRefGoogle Scholar
Allen, M.L., Aronniemi, M., Mattila, T., Alastalo, A., Ojanpera, K., Suhonen, M., and Seppa, H.: Electrical sintering of nanoparticle structures. Nanotechnology 19(17) (2008).CrossRefGoogle ScholarPubMed
Leppaniemi, J., Aronniemi, M., Mattila, T., Alastalo, A., Allen, M., and Seppa, H.: Printed WORM memory on a flexible substrate based on rapid electrical sintering of nanoparticles. IEEE Trans. Electron Devices 58(1), 151 (2011).CrossRefGoogle Scholar
Roy, R., Agarwal, D., Chen, J.P., and Gedevanishvili, S.: Full sintering of powdered-metal bodies in a microwave field. Nature 399(6737), 668 (1999).CrossRefGoogle Scholar
Perelaer, J., de Gans, B-J., and Schubert, U.S.: Inkjet printing and microwave sintering of conductive silver tracks. Adv. Mater. 18(16), 2101 (2006).CrossRefGoogle Scholar
Wunscher, S., Stumpf, S., Teichler, A., Pabst, O., Perelaer, J., Beckert, E., and Schubert, U.S.: Localized atmospheric plasma sintering of inkjet printed silver nanoparticles. J. Mater. Chem. 22(47), 24569 (2012).CrossRefGoogle Scholar
Perelaer, J., Abbel, R., Wünscher, S., Jani, R., van Lammeren, T., and Schubert, U.S.: Roll-to-roll compatible sintering of inkjet printed features by photonic and microwave exposure: From non-conductive ink to 40% bulk silver conductivity in less than 15 seconds. Adv. Mater. 24(19), 2620 (2012).CrossRefGoogle ScholarPubMed
Deegan, R.D.: Pattern formation in drying drops. Phys. Rev. E 61(1), 475 (2000).CrossRefGoogle ScholarPubMed
Merilampi, S.L., Bjorninen, T., Vuorimaki, A., Ukkonen, L., Ruuskanen, P., and Sydanheimo, L.: The effect of conductive ink layer thickness on the functioning of printed UHF RFID antennas. Proc. IEEE 98(9), 1610 (2010).CrossRefGoogle Scholar
Supplementary material: File

Wolf et al. supplementary material

Supplementary figure 1

Download Wolf et al. supplementary material(File)
File 120.8 KB