Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T01:31:09.919Z Has data issue: false hasContentIssue false

Raman studies of reactive DC-magnetron sputtered thin films of YBaCuO on MgO

Published online by Cambridge University Press:  31 January 2011

K. C. Sheng
Affiliation:
Materials Research Center, Northwestern University, Evanston, Illinois 60208
S. J. Lee
Affiliation:
Materials Research Center, Northwestern University, Evanston, Illinois 60208
Y. H. Shen
Affiliation:
Materials Research Center, Northwestern University, Evanston, Illinois 60208
X. K. Wang
Affiliation:
Materials Research Center, Northwestern University, Evanston, Illinois 60208
E. D. Rippert
Affiliation:
Materials Research Center, Northwestern University, Evanston, Illinois 60208
R. P. Van Duyne
Affiliation:
Materials Research Center, Northwestern University, Evanston, Illinois 60208
J. B. Ketterson
Affiliation:
Materials Research Center, Northwestern University, Evanston, Illinois 60208
R. P. H. Chang
Affiliation:
Materials Research Center, Northwestern University, Evanston, Illinois 60208
Get access

Abstract

Raman spectroscopy was employed to study Y–Ba–Cu–O films prepared by multilayer, reactive sputtering from separate Y, Cu, and Ba0.5Cu0.5 targets. A set of films having the composition YxBa2CuyOz with 0.7 < x < 1.8 and 2.8 < y < 3.5 and critical temperature with zero resistance, Tc(R = 0), ranging from 25 to 90 K was studied with the Raman technique. The correlation between Raman data and critical temperature, Tc, was investigated. This technique provides important information concerning the film crystallinity, homogencity, and impurity content (including other phases) which is useful in judging the quality of high Tc superconducting films. We also found that the rapid thermal annealing process is a very efficient way to reduce chemical reactions between the film and the substrate.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bednorz, J. G. and Miiller, K. A.Z. Phys. B64, 189 (1987).Google Scholar
2Wu, M. K.Ashburn, J. R.Torng, C. J.Hor, P. H.Meng, R. L.Gao, L.Huang, Z. J.Wang, Y. Q. and Chu, C. W.Phys. Rev. Lett. 58, 908 (1987).CrossRefGoogle Scholar
3Tanaka, S. and Itozaki, H.Jpn. J. Appl. Phys. 27, L622 (1988).Google Scholar
4Terashima, T.Iijima, K.Yamamoto, K.Bando, Y. and Mazaki, H.Jpn. J. Appl. Phys. 27, L91 (1988).CrossRefGoogle Scholar
5Myoren, H.Nishiyama, Y.Nasu, H.Imura, T.Osaka, Y.Yamanaka, Shoji, and Hattori, M.Jpn. J. Appl. Phys. 27, L1068 (1988).CrossRefGoogle Scholar
6Roas, B.Schultz, L. and Endres, G.Appl. Phys. Lett. 53, 1557 (1988).CrossRefGoogle Scholar
7Wang, G.Hwu, S.J.Song, S.N.Ketterson, J.B.Marks, L. D.Poeppelmeier, K. R. and Mason, T. O.Adv. Cer. Mat. 2, 313 (1987).Google Scholar
8Jin, B.Y.Lee, S.J.Song, S.N.Hwu, S.J.Poeppelmeier, K. R. and Ketterson, J.B.Adv. Cer. Mat. 2, 436 (1987).Google Scholar
9Lee, S.J.Rippert, E.D.Jin, B. Y.Song, S.N.Hwu, S.J.Poeppelmeier, K.R. and Ketterson, J.B.Appl. Phy. Lett. 51, 1194 (1987).Google Scholar
10Yang, K. Y.Homma, H.Lee, R.Bhadra, R.Grimsditch, M. and Bader, S.D.Appl. Phys. Lett. 53, 808 (1988).Google Scholar
11Hangyo, M.Nakashima, S.Mizoguchi, K.Fujii, A. and Mitsuishi, A.Solid State Commun. 65, 835 (1988).Google Scholar
12Thomsen, C.Liu, R.Bauer, M.Wittlin, A.Genzel, L.Cardona, M.Schonherr, E.Bauhofer, W. and Kénig, W., Solid State Commun. 65, 55 (1988).Google Scholar
13Cardona, M.Liu, R.Thomsen, C.Kress, W.Schonherr, E.Bauer, M.Genzel, L. and Konig, W.Solid State Commun. 67, 789 (1988).CrossRefGoogle Scholar
14Benitez, E.L.Lin, J.J.Poon, S.J.Farneth, W. E.Crawford, M.K. and McCarron, E.M.Phys. Rev. B38 (7), 5025 (1988).CrossRefGoogle Scholar
15Batlogg, B.Cava, R. J.Jayaraman, A.Dover, R.B. van, Kourouklis, G. A.Sunshine, S.Murphy, D.W.Rupp, L. W.Chen, H. S.White, A.Short, K. T.Mujsce, A. M. and Rietman, E. A.Phys. Rev. Lett. 58, 2333 (1987).CrossRefGoogle Scholar
16Mascarenhas, A.Geller, S. and Xu, L. C.Appl. Phys. Lett. 52 (3), 18 January, 1988.CrossRefGoogle Scholar
17Bhadra, R.Brun, T.O., Beno, M. A.Dabrowski, B.Hinks, D.G.Liu, J. Z.Jorgensen, J.D.Nowicki, L. J.Paulikas, A. P.Schuller, I.K.Segre, C.U.Soderholm, L.Veal, B.Wang, H.H.Williams, J.M.Zhang, K. and Grimsditch, M.Phys. Rev. B37, 5142 (1988).Google Scholar
18Erie, A.Blumenroder, S.Zirngiebl, E.Viet, M.Langen, J. and Guntherodt, G.Physica C C153155, 296 (1988).Google Scholar
19Lakovits, J.M. Ph.D. Thesis Northwestern University, Evanston, IL (1981).Google Scholar
20Wang, X. K.Sheng, K. C.Lee, S. J.Shen, Y. H.Song, S.N.. Li, D. X. R. Chang, P. H. and Ketterson, J.B.Appl. Phys. Lett. 54 (16), 1573 (1989).CrossRefGoogle Scholar
21Thomsen, C.Cardona, M.Gegenheimer, B. and Liu, R.Physica C153155, 262 (1988).Google Scholar
22Thomsen, C.Cardona, M.Kress, W.Liu, R.Genzel, L.Bauer, M. and Schonherr, E.Solid State Commun. 65, 1139 (1988).Google Scholar
23Cardona, M.Genzel, L.Liu, R.Wittlin, A. and Mattausch, H.Solid State Commun. 64, 727 (1987).CrossRefGoogle Scholar
24Burns, G.Dacol, F. H.Holtzberg, F. and Kaiser, D. L.Solid State Commun. 66, 217 (1988).Google Scholar
25Hemley, R.J. and Mao, H. K.Phys. Rev. Lett. 58, 2340 (1987).CrossRefGoogle Scholar
26Li, D.J.Shibahara, H.Zhang, J.P. and Marks, L. D.Physica C156, 201 (1988).Google Scholar
27Taliani, C.Zamboni, R.Ruani, G.Mattacota, F. C. and Pokhodnya, K. I.Solid State Commun. 66 (5), 487 (1988); C. Taliani, R. Zamboni and F. Licci Solid State Commun. 64 (6) 911 (1987).CrossRefGoogle Scholar
28Kuzmany, H.Matus, M.Faulques, E.Pekker, S.Hutiray, G.Zsoldos, E. and Mihaly, L.Solid State Commun. 65 (11), 1343 (1988).CrossRefGoogle Scholar
29Burns, G.Dacol, E.H.Freitas, P.Plaskett, T. S. and Konig, W.Solid State Commun. 64 (4), 471 (1987).CrossRefGoogle Scholar
30Minamikawa, T.Yonezawa, Y.Otsubo, Shigeru, Maeda, T.Moto, A.Morimoto, A. and Shimizu, T.Jpn. Appl. Phys. 27, L619 (1988).CrossRefGoogle Scholar
31Nakajima, H.Yamaguchi, S.Iwasaki, K.Morita, H.Fujimori, H. and Fujino, Y.Appl. Phys. Lett. 53 (15), 1437 (1988).CrossRefGoogle Scholar
32Harada, K.Fujimori, N. and Yazu, S.Jpn. Appl. Phys. 27, L1524 (1988).CrossRefGoogle Scholar
33Cima, M.J.Schneider, J.S.Peterson, S.C. and Coblenz, W.Appl. Phys. Lett. 53 (8), 710 (1988).CrossRefGoogle Scholar
34Stavola, M.Krol, D. M.Weber, W.Sunshine, S.A.Jayarama, A.Kourouklis, G. A.Cava, R. J. and Rietman, E. A.Phys. Rev. B36 (1), 850 (1987).CrossRefGoogle Scholar
35Beale, P.D.Scott, J.F.Zhang, M.Chen, Z.Hu, G.Jin, X.Shao, H.Wang, G. and Zhao, J.Solid State Commun. 65 (10), 1145 (1988).CrossRefGoogle Scholar
36Dai, Y.Swinnea, J.S.Steinfink, H.Goodenough, J. B. and Campion, A., J. Am. Chem. Soc. 109, 5921 (1987).CrossRefGoogle Scholar
37Blumenroder, S.Zirngiebl, E.Schmidt, H.Guntherodt, G. and Brenten, H.Solid State Commun. 64 (9), 1229 (1987).CrossRefGoogle Scholar