Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T01:06:15.791Z Has data issue: false hasContentIssue false

Radiation degradation of poly(butene-1 sulfone) and poly(1,4-phenylene ether sulfone) in the soft x-ray region

Published online by Cambridge University Press:  31 January 2011

Brian W. Yates*
Affiliation:
Canadian Synchrotron Radiation Facility, Synchrotron Radiation Center, University of Wisconsin–Madison, Stoughton, Wisconsin 53589-3097
Douglas M. Shinozaki
Affiliation:
Department of Materials Engineering, University of Western Ontario, London, Ontario, Canada N6A 5B7
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

The mass spectral fragment ion yields and total electron yields have been measured for the polymers poly(butene-1 sulfone) [PBS] and poly(1,4-phenylene ether sulfone) [PPES] around the sulfur 2p (LII) edge, using synchrotron radiation from the Canadian Synchrotron Radiation Facility [CSRF]. Ionization of the sulfur 2p orbitals of PBS produced a sharp decrease in the neutral yields of SO2 and 1-butene. Decreases in the SO2 and 1-butene neutral yield shapes “mirrored” the structure present in the total electron yield. Ionization of the sulfur 2p orbital does not appear to produce any enhanced cleavage of the C–S bonds in the polymer backbone. A G(olefin)/G(SO2) ratio of 0.96 ± 0.15 was determined at 21 °C from mass spectrometry, consistent with a depropagation reaction mechanism. PPES showed a much different behavior than PBS about the sulfur 2p edge, with no detectable yield of SO2.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Thompson, L. F. and Bowden, M. J., J. Electrochem. Soc. 120, 1722 (1973).CrossRefGoogle Scholar
2.Bowden, M. J. and Thompson, L. F., Appl. Polymer Symp. 23, 99 (1974).Google Scholar
3.Bowden, M. J., Thompson, L. F., and Ballantyne, J. P., J. Vac. Sci. Technol. 12, 1294 (1975).CrossRefGoogle Scholar
4.Ivin, K. J. and Rose, J. B., Adv. Macromol. Chem. 1, 335 (1968).Google Scholar
5.Kiran, E. and Gillham, J. K., J. Appl. Polymer Sci. 21, 1159 (1977).CrossRefGoogle Scholar
6.Bowden, M. J. and Thompson, L. F., J. Appl. Polymer Sci. 17, 3211 (1973).CrossRefGoogle Scholar
7.Brown, J. R. and O'Donnell, J. H., Macromolecules 5, 109 (1972).CrossRefGoogle Scholar
8.Bowmer, T. N. and O'Donnell, J. H., J. Macromol. Sci.-Chem. A 17, 243 (1982).CrossRefGoogle Scholar
9.Cornu, A. and Massot, R., Compilation of Mass Spectral Data (Heyden & Son Inc., New York, 1975), Vols. 1 & 2.Google Scholar
10.Haller, I., J. Phys. Chem. 95, 2832 (1991).CrossRefGoogle Scholar
11.Bowmer, T. N. and O'Donnell, J. H., Makromol. Chem., Rapid Commun. 1, 1 (1980).CrossRefGoogle Scholar
12.Bowmer, T. N. and O'Donnell, J. H., J. Polymer Sci. (Polymer Chemistry ed.) 19, 45 (1981).Google Scholar
13.Brown, J. R. and O'Donnell, J. H., Macromolecules 3, 265 (1970).CrossRefGoogle Scholar
14.Loo, J. A., Wang, B. H., Wang, F. C-Y., and McLafferty, F. W., Macromolecules 20, 698 (1987).CrossRefGoogle Scholar
15.Schüddemage, H. D. R. and Hummel, D. O., Kolloid-Z. Z. Polym. 207, 103 (1966).CrossRefGoogle Scholar
16.Gritter, R. J., Seeger, M., and Gipstein, E., J. Polymer Sci. (Polymer Chemistry Ed.) 16, 353 (1978).Google Scholar
17.Reiser, Arnost, Photoreactive Polymers: The Science and Technology of Resists (John Wiley & Sons, New York, 1989), p. 324.Google Scholar
18.Morrison, R. T. and Boyd, R. N., Organic Chemistry, 3rd ed. (Allyn & Bacon, Inc., Boston, MA, 1973), p. 21.Google Scholar
19.Bowmer, T. N. and O'Donnell, J. H., Radiat. Phys. Chem. 17, 177 (1981).Google Scholar
20.Thompson, L. F., Stillwagon, L. E., and Doerries, E. M., J. Vac. Sci. Technol. 15, 938 (1978).CrossRefGoogle Scholar
21.Ferrett, T. A., Heimann, P. A., Kerkhoff, H. G., Becker, U., Lindle, D. W., and Shirley, D. A., Chem. Phys. Lett. 138, 607 (1987).CrossRefGoogle Scholar
22.Vinogradov, A. S. and Zimkina, T. M., Opt. Spectrosc. 31, 364 (1971).Google Scholar
23.Krasnoperova, A. A., Gluskin, E. S., Mazalov, L. N., and Kochubei, V. A., J. Struct. Chem. 17, 947 (1976).CrossRefGoogle Scholar
24.Sze, K-H., Brion, C. E., Tong, X-M., and Li, J-M., Chem. Phys. 115, 433 (1987).Google Scholar
25.Dehmer, J. L., J. Chem. Phys. 56, 4496 (1972).CrossRefGoogle Scholar
26.Sze, K. H., Brion, C. E., Tronc, M., Bodeur, S., and Hitchcock, A. P., Chem. Phys. 121, 279 (1988).CrossRefGoogle Scholar