Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T02:45:46.489Z Has data issue: false hasContentIssue false

The quasicrystalline transformation in the AlCr system

Published online by Cambridge University Press:  31 January 2011

D.A. Lilienfeld
Affiliation:
Department of Materials Science, Cornell University, Ithaca, New York 14853
M. Nastasi
Affiliation:
Department of Materials Science, Cornell University, Ithaca, New York 14853
H.H. Johnson
Affiliation:
Department of Materials Science, Cornell University, Ithaca, New York 14853
D.G. Ast
Affiliation:
Department of Materials Science, Cornell University, Ithaca, New York 14853
J.W. Mayer
Affiliation:
Department of Materials Science, Cornell University, Ithaca, New York 14853
Get access

Abstract

Amorphous Al80Cr20 films were made by coevaporation and by room temperature ion irradiation of the coevaporated films. The amorphous phase was transformed into the quasicrystalline state through two routes: thermal and ion beam assisted anneal. The intensity of the quasicrystalline electron diffraction pattern increases continuously within the annealing temperature range from 547°to 607°C. The starting state of the films (as-deposited or ion-irradiated codeposited) had no effect on the thermal transformation to the quasicrystalline state. Ion irradiation of the amorphous phase at 200°C produces a more complete set of icosahedral diffraction lines. Icosahedral AlCr has the same reciprocal lattice spacings as icosahedral AlMn.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Shechtman, D., Blech, I. A., Gratias, D., and Cahn, J. W., Phys. Rev. Lett. 53, 1951 (1984).CrossRefGoogle Scholar
2Chattopadhyay, K., Ranganathan, S., Subbanna, G. N., and Thangaraj, N., Scr. Metall. 19, 767 (1985).Google Scholar
3Shechtman, D., Schaefer, R. J., and Biancaniello, F. S., Metall. Trans. A 15, 1987 (1984).CrossRefGoogle Scholar
4Bancel, P. A., Heiney, P. A., Stephens, P. W., Goldman, A. I., and Horn, P. M., Phys. Rev. Lett. 54, 2422 (1985).CrossRefGoogle Scholar
5Shechtman, D. and Blech, I. A., Metall. Trans. A 16, 1005 (1985).CrossRefGoogle Scholar
6Field, R. D. and Fraser, H. L., Mater. Sci. Eng. 68, L17 (1984).Google Scholar
7Bendersky, L., Schaefer, R. J., Biancaniello, F. S., Boettinger, W. J., Kaufman, M. J., and Shechtman, D., Scr. Metall. 19, 909 (1985).CrossRefGoogle Scholar
8Lilienfeld, D. A., Nastasi, M. A., Johnson, H. H., Ast, D. G., and Mayer, J. W., Phys. Rev. Lett. 55, 1587 (1985).CrossRefGoogle Scholar
9Knapp, J. A. and Follstaedt, D. M., Phys. Rev. Lett. 55, 1591 (1985).CrossRefGoogle Scholar
10Budai, J. and Aziz, M. (private communication).Google Scholar
11Doolittle, L. R., Nucl. Instrum. Methods B 9, 344 (1985); [using stopping powers from J. F. Ziegler, Helium Stopping Powers and Ranges in All Elements (Pergamon, New York, 1977)].CrossRefGoogle Scholar
12Barbour, J. C., Sickafus, K., and Nastasi, M., J. Vac. Sci. Technol. A 3, 1895 (1985).CrossRefGoogle Scholar
13Nelson, D. R. and Sachdev, S., Phys. Rev. B 32, 689 (1985).Google Scholar
14Mermin, N. D. and Troian, S. M., Phys. Rev. Lett. 54, 1524 (1985).CrossRefGoogle Scholar
15Bak, P., Phys. Rev. Lett. 54, 1517 (1985).Google Scholar
16Kuriyama, M., Long, G. G., and Bendersky, L., Phys. Rev. Lett. 55, 849 (1985).CrossRefGoogle Scholar
17Schectman, D. and Blech, I. A., Metall. Trans. A 16, 1005 (1985).Google Scholar
18Elser, V., Phys. Rev. B 32, 4892 (1985).CrossRefGoogle Scholar
19Levine, D. and Steinhardt, P. J., Phys. Rev. Lett. 53, 2477 (1984).CrossRefGoogle Scholar
20Elser, V. and Henley, C. L., Phys. Rev. Lett. 55, 2883 (1985).CrossRefGoogle Scholar
21Guyot, P. and Audier, M., Philos. Mag. B 52, L15 (1985).CrossRefGoogle Scholar
22Knowles, K. M., Greer, A. L., Saxton, W. O., and Stobbs, W. M., Philos. Mag. B 52, L31 (1985).CrossRefGoogle Scholar
23Lilienfeld, D. A., Nastasi, M., Johnson, H. H., Ast, D. G., and Mayer, J. W., Mat. Res. Soc. Sym. Proc. 51 (1986).Google Scholar
24Bancel, P. (private communication).Google Scholar
25Henley, C., J. Non-Cryst. Solids 75, 91 (1985).CrossRefGoogle Scholar