Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T09:37:58.471Z Has data issue: false hasContentIssue false

Quantitative adhesion measures of multilayer films: Part I. Indentation mechanics

Published online by Cambridge University Press:  31 January 2011

Michael D. Kriese
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
William W. Gerberich
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
Neville R. Moody
Affiliation:
Sandia National Laboratories, Livermore, California 94551
Get access

Abstract

The mechanics for calculating the quantitative driving force of indentation-induced delamination of thin-film multilayers is presented. The solution is based on the mechanics developed by Marshall and Evans [D.B. Marshall and A.G. Evans, J. Appl. Phys. 56, 2632 (1984).] and extended to the general case of a multilayer by use of standard bending and thin-plate analyses. Presented and discussed are the specific solutions for the bilayer case that show that in the limit of zero thickness of either layer, the solution converges to the single-layer case. In the range of finite thickness, the presence of the superlayer increases the driving force relative to that possible for the original film alone and can be optimized to the experimental situation by proper choice of thickness, elastic constants, and residual stress. The companion paper “Quantitative adhesion measures of multilayer films: Part II. Indentation of W/Cu, W/W, Cr/W” discusses experimental results with copper, tungsten, and chromium thin films.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Marshall, D.B. and Evans, A.G., J. Appl. Phys. 56, 2632 (1984).Google Scholar
2.Russell, S.W., Rafalski, S.A., Spreitzer, R.L., Li, J., Moinpour, M., Moghadam, F., and Alford, T.L., Thin Solid Films 262, 154 (1995).Google Scholar
3.Ohring, M., The Materials Science of Thin Films (Academic Press, New York, 1992).Google Scholar
4.Bagchi, A. and Evans, A.G., Thin Solid Films 286, 203 (1996).CrossRefGoogle Scholar
5.Suo, Z. and Hutchinson, J.W., Int. J. Frac. 43, 1 (1990).Google Scholar
6.Rice, J.R., J. Appl. Mech. 55, 98 (1988).Google Scholar
7.Evans, A.G., Rühle, M., Dalgleish, B.J., and Charalambides, P.G., Mater. Sci. Eng. A126, 53 (1990).Google Scholar
8.Hutchinson, J.W. and Suo, Z., in Advances in Applied Mechanics, edited by Hutchinson, J.W. and Hu, T.Y. (Academic Press, New York, 1992), pp. 63169.Google Scholar
9.Evans, A.G., Drory, M.D., and Hu, M.S., J. Mater. Res. 3, 1043 (1988).CrossRefGoogle Scholar
10.O'Dowd, N.P., Shih, C.F., and Stout, M.G., Int. J. Sol. Struc. 29, 571 (1992).Google Scholar
11.Wang, J.S. and Suo, Z., Acta Metall. 38, 1279 (1990).CrossRefGoogle Scholar
12.Suo, Z. and Hutchinson, J.W., Mater. Sci. Eng. A107, 135 (1989).CrossRefGoogle Scholar
13.Cao, H.C. and Evans, A.G., Mech. Mater. 7, 295 (1989).Google Scholar
14.Ma, Q., Fujimoto, H., Flinn, P., Jain, V., Adibi, F.R., Moghadam, F., and Dauskardt, R.H., in Materials Reliability in Microelectronics V, edited by Oates, A.S., Filter, W.F., Rosenberg, R., Greer, A.L., and Gadepally, K. (Mater. Res. Soc. Symp. Proc. 391, Pittsburgh, PA, 1995), pp. 9196.Google Scholar
15.Becker, T.L. Jr, McNaney, J.M., Cannon, R.M., and Ritchie, R.O., Mech. Mater. 25, 291 (1997).Google Scholar
16.Allen, M.G. and Senturia, S.D., J. Adhesion 29, 219 (1989).CrossRefGoogle Scholar
17.Allen, M.G. and Senturia, S.D., J. Adhesion 25, 303 (1988).CrossRefGoogle Scholar
18.Jensen, H.M. and Thouless, M.D., Int. J. Sol. Struc. 30, 779 (1993).Google Scholar
19.Jensen, H.M., Eng. Frac. Mech. 40, 475 (1991).CrossRefGoogle Scholar
20.Wan, K-T. and Mai, Y-W., Acta Metall. 43, 4109 (1995).Google Scholar
21.Akisanya, A.R. and Fleck, N.A., Int. J. Sol. Struc. 31, 3175 (1994).Google Scholar
22.Jensen, H.M., Hutchinson, J.W., and Kim, K-S., Int. J. Sol. Struc. 26, 1099 (1990).Google Scholar
23.Rossington, C., Evans, A.G., Marshall, D.B., and Khuri-Takub, B.T., J. Appl. Phys. 56, 2639 (1984).Google Scholar
24.Chiang, S.S., Marshall, D.B., and Evans, A.G., in Surfaces and Interfaces in Ceramic and Ceramic-Metal Systems, edited by Parks, J. and Evans, A.G. (Plenum Press, New York, 1981), pp. 603617.Google Scholar
25.Rosenfield, L.G., Ritter, J.E., Lardner, T.J., and Lin, M.R., J. Appl. Phys. 67, 3291 (1990).Google Scholar
26.Bahr, D.F. and Gerberich, W.W., in Thin Films: Stresses and Mechanical Properties VI, edited by Gerberich, W.W., Gao, H., Sundgren, J-E., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1996), pp. 8590.Google Scholar
27.Bahr, D.F., Hoehn, J.W., Moody, N.R., and Gerberich, W.W., Acta Mater. 45, 5163 (1997).Google Scholar
28.Li, X., Diao, D., and Bhushan, B., Acta Metall. 45, 4453 (1997).Google Scholar
29.Vlassak, J.J., Drory, M.D., and Nix, W.D., J. Mater. Res. 12, 1900 (1997).Google Scholar
30.Turner, M.R. and Evans, A.G., Acta Mater. 44, 863 (1996).CrossRefGoogle Scholar
31.Bagchi, A., Lucas, G.E., Suo, Z., and Evans, A.G., J. Mater. Res. 9, 1734 (1994).Google Scholar
32.Kriese, M.D., Moody, N.R., and Gerberich, W.W., J. Mater. Res. 14, 3019 (1999).Google Scholar
33.Evans, A.G. and Hutchinson, J.W., Int. J. Sol. Struc. 20, 455 (1984).Google Scholar
34.Nix, W.D., Metall. Trans. A 20A, 2217 (1988).Google Scholar
35.Beer, F.P. and Johnston, E.R. Jr, Mechanics of Materials (McGraw-Hill, New York, 1981).Google Scholar
36.Baker, S.P. and Nix, W.D., J. Mater. Res. 9, 3131 (1994).Google Scholar
37.Evans, A.G. and Hutchinson, J.W., Acta Metall. 43, 2507 (1995).Google Scholar
38.Thouless, M.D., Evans, A.G., Ashby, M.F., and Hutchinson, J.W., Acta. Metall. 35, 1333 (1987).Google Scholar
39.deBoer, M.P. and Gerberich, W.W., Acta Metall. 44, 3169 (1996).Google Scholar
40.Chiang, S.S., Marshall, D.B., and Evans, A.G., J. Appl. Phys. 53, 298 (1982).Google Scholar
41.Tvergaard, V. and Hutchinson, J.W., J. Mech. Phys. Sol. 41, 1119 (1993).Google Scholar
42.Castaneda, P.P. and Mataga, P.A., Int. J. Sol. Struc. 27, 105 (1991).CrossRefGoogle Scholar
43.Agarwal, B.D. and Broutman, L.J., Analysis and Performance of Fiber Composites (John Wiley & Sons, Inc., New York, 1990).Google Scholar