Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T07:43:44.151Z Has data issue: false hasContentIssue false

Quantifying improvements in adhesion of platinum films on brittle substrates

Published online by Cambridge University Press:  03 March 2011

M.J. Cordill
Affiliation:
School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920
N.R. Moody
Affiliation:
Sandia National Laboratories, Livermore, California 94550-0969
D.F. Bahr
Affiliation:
School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920
Get access

Abstract

This study used nanoindentation coupled with stressed overlayers to evaluate the effect of titanium interlayers on the interfacial fracture energy of platinum films on SiO2 substrates. Interfacial fracture energy was calculated three ways: from platinum buckles that formed spontaneously upon deposition of the film, from buckles that formed upon deposition of a stressed tungsten overlayer, and from blisters triggered by indentation of a platinum film with a tungsten stressed overlayer. The calculated values for the interfacial fracture energy of the Pt-SiO2 interface were 0.2 and 0.5 J/m2 for indentation blisters and spontaneous buckles, respectively. The effect of a titanium interlayer on adhesion was examined using a tungsten stressed overlayer coupled with nanoindentation. The addition of a titanium layer improved the adhesion of the platinum film on SiO2 from 0.2 to 1.0 J/m2.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kriese, M.D., Moody, N.R. and Gerberich, W.W.: Effects of annealing and interlayers on the adhesion energy of copper thin films to SiO2/Si substrates. Acta Materialia. 46, 6623 (1998).CrossRefGoogle Scholar
2Volinsky, A.A., Bahr, D.F., Kriese, M., Moody, N.R. and Gerberich, W.W.: Interfacial and Nanoscale Failure, Nanoindentation Methods For Interfacial Fracture Testing, in Encyclopedia on Comprehensive Structural Integrity, Vol. 8, edited by Gerberich, W.W., Yang, W., Milne, I., Ritchie, R.O., and Karihaloo, B., editors-in-chief (Elsevier, Amsterdam, 2003)Google Scholar
3Volinsky, A.A., Moody, N.R. and Gerberich, W.W.: Interfacial toughness measurements from thin films on substrates. Acta Mater. 50, 441 (2002).Google Scholar
4Rickerby, D.S.: A review of the methods for the measurement of coating-substrate adhesion. Surf. Coat. Technol. 36, 541 (1988).CrossRefGoogle Scholar
5Thouless, M.D.: An analysis of spalling in the microscratch test. Eng. Fract. Mech. 61, 75 (1998).Google Scholar
6Venkataraman, S., Kohlstedt, D.L. and Gerberich, W.W.: Continuous microscratch measurements of the practical and true works of adhesion for metal/ceramic systems. J. Mater. Res. 11, 3133 (1996).CrossRefGoogle Scholar
7Wu, T.W.: Microscratch and load relaxation tests for ultra-thin films. J. Mater. Res. 6, 407 (1991).CrossRefGoogle Scholar
8Kriese, M.D., Moody, N.R. and Gerberich, W.W.: Quantaitative adhesion measures of multilayer films: Part I. Indentation mechanics. J. Mater. Res. 14, 3007 (1999).CrossRefGoogle Scholar
9Marshall, D.B. and Evans, A.G.: Measurement of adherence of residually stressed thin films by indentation I. Mechanics of interface delamination. J. Appl. Phys. 10, 2632 (1984).Google Scholar
10DeBoer, M.P. and Gerberich, W.W.: Microwedge indentation of the thin film fine line–I. Mechanics. Acta. Mater. 44, 3169 (1996).CrossRefGoogle Scholar
11Kriese, M.D., Moody, N.R. and Gerberich, W.W.: Quantaitative adhesion measures of multilayer films: Part II. Indentation of W/Cu, W/W, Cr/W J. Mater. Res. 14, 3019 (1999).CrossRefGoogle Scholar
12Rosenfeld, L.G., Ritter, J.E., Lardner, T.J. and Lin, M.R.: Use of microindentation technique for determining interfacial fracture energy. J. Appl. Phys. 67, 3291 (1990).CrossRefGoogle Scholar
13Dauskardt, R.H., Lane, M., Ma, Q. and Krishna, N.: Adhesion and debonding of multilayer thin film structures. Eng. Fract. Mech. 61, 141 (1998).Google Scholar
14Bagchi, A., Lucas, G.E., Suo, Z. and Evans, A.G.: A new procedure for measuring the decohesion energy for thin ductile films on substrates. J. Mater. Res. 9, 1734 (1994).Google Scholar
15Bagchi, A. and Evans, A.G.: Measurements of the debond energy for thin metallization lines on dielectrics. Thin Solid Films 286, 230 (1996).Google Scholar
16Hutchinson, J.W. and Suo, Z.: Mixed mode cracking in layered materials. Adv. Appl. Mech. 29, 64 (1992).Google Scholar
17Moody, N.R., Adams, D.P., Cordill, M.J., Yang, N. and Bahr, D.F., in Thin Films: Stresses and Mechanical Properties IX, edited by Ozkan, C.S., Freund, L.B., Cammarata, R.C., and Gao, H. (Mater. Res. Soc. Symp. Proc. 695, Warrendale, PA, 2002), pp. 323328.Google Scholar
18Volinsky, A.A., Moody, N.R, and Gerberich, W.W., in Thin Films—Stresses and Mechanical Properties VII, edited by Vinci, R., Kraft, O., Moody, N., Besser, P., and Shaffer, E. II. (Mater. Res. Soc. Symp. Proc. 594, Warrendale, PA, 2000), p. 383Google Scholar
19Kriese, M.D., Moody, N.R., and Gerberich, W.W., in Thin-Films—Stresses and Mechanical Properties VII, edited by Cammarata, R.C., Nastasi, M.A., Busso, E.P., and Oliver, W.C. (Mater. Res. Soc. Symp. Proc. 505, Warrendale, PA, 1998), p. 363Google Scholar
20Kriese, M.D., Moody, N.R. and Gerberich, W.W.: Effects of annealing and interlayers on the adhesion energy of copper thin films to SiO2/Si substrates. Acta Mater. 46, 6623 (1998).Google Scholar
21He, M.Y., Evans, A.G. and Hutchinson, J.W.: Effects of morphology on the decohesion of compressed thin films. Mater. Sci. Eng. A245, 168 (1998).CrossRefGoogle Scholar
22Tymiak, N.I., Volinsky, A.A., Kriese, M.D., Downs, S.A. and Gerberich, W.W.: The role of plasticity on bimaterial fracture with ductile interlayers. Metall. Mater. Trans A. 31A, 863 (2000).CrossRefGoogle Scholar
23Evans, A.G., Hutchinson, J.W. and Wei, Y.: Interface adhesion: Effects of plasticity and segregation. Acta Mater. 47, 4093 (1999).Google Scholar
24Moody, N.R., Strojny, A., Medlin, D.L., Talin, A. and Gerberich, W.W.: Substrate composition effects of the interfacial fracture of tantalum nitride films. J. Mater. Res. 14, 2306 (1999).Google Scholar
25Schnieder, J.A., Guthrie, S.E., Kriese, M.D., Clift, W.M. and Moody, N.R.: Impurity effects on the adhesion of aluminum films on sapphire substrates. Mater. Sci. Eng. A259, 253 (1999).CrossRefGoogle Scholar
26Ali, N., Ahmed, W., Rego, C.A. and Fan, Q.H.: Chromium interlayers as a tool for enhancing diamond adhesion on copper. Diamond Relat. Mater. 9, 1464 (2000).Google Scholar
27Polla, D.L. and Francis, L.F.: Processing and characterization of piezoelectric materials and integration into microelectromechanical systems. Ann. Rev. Mater. Sci. 28, 563 (1998).CrossRefGoogle Scholar
28Muralt, P.: Ferroelectric thin films for micro-sensors and actuators: A review. J. Micromech. Microeng. 10, 136 (2000).Google Scholar
29Bernhardt, G., Silvestre, C., LeCursi, N., Moulzolf, S.C., Frankel, D.J. and Lad, R.J.: Performance of Zr and Ti adhesion layer for bonding platinum metallization to sapphire substrates. Sens. Actuators B-Chemical 77, 368 (2001).Google Scholar
30Callister, W.D.: Materials Science and Engineering: An Introduction. 5th ed. (John Wiley and Sons, New York, 2000)Google Scholar
31Chawla, K.K., Composite Materials Science and Engineering,2nd ed. (Springer, New York, 1998)Google Scholar
32Suo, Z. and Hutchinson, J.W.: Interface crack between two elastic layers. Int. J. Fracture 43, 1 (1990).Google Scholar
33Thouless, M.D., Evans, A.G., Ashby, M.F. and Hutchinson, J.W.: The edge cracking and spalling of brittle plates. Acta Metall. 35, 1333 (1987).Google Scholar
34Li, M., Palacio, M.L., Carter, C.B. and Gerberich, W.W.: Indentation deformation and fracture of thin polystyrene films. Thin Solid Films 416, 174 (2002).CrossRefGoogle Scholar
35Cordill, M.J., Moody, N.R., and Bahr, D.F., in Surface Engineering 2002—Synthesis, Characterization and Applications, edited by Kumar, A., Meng, W.J., Cheng, Y-T., Zabinski, J.S., Doll, G.L., and Veprek, S. (Mater. Res. Soc. Symp. Proc. 750, Warrendale, PA, 2003), pp. 3338Google Scholar
36Lane, M., Dauskardt, R.H., Vainchtein, A. and Gao, H.: Plasticity contributions to interface adhesion in thin film interconnect structures. J. Mater. Res. 15, 2758 (2000).CrossRefGoogle Scholar
37Moon, M.W., Jensen, H.M., Hutchinson, J.W., Oh, K.H. and Evans, A.G.: An experimental study of the influence of imperfections on the buckling of compressed thin films. J. Mech Phys Solids. 50, 2355 (2002).CrossRefGoogle Scholar