Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T06:23:30.622Z Has data issue: false hasContentIssue false

Pyramidal indentation load–depth curve of viscoelastic materials

Published online by Cambridge University Press:  31 January 2011

S. Shimizu
Affiliation:
Department of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441–8580, Japan
T. Yanagimoto
Affiliation:
Department of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441–8580, Japan
M. Sakai
Affiliation:
Department of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441–8580, Japan
Get access

Abstract

The indentation load P versus depth h curves are examined to investigate the time-dependent surface deformation of viscoelastic materials. The viscoelastic Ph curves significantly depend on the temperature of measurement and the penetration rate of indentation. Sneddon's elastic solution of a conical indentation is extended to a viscoelastic one for a conical or a pyramidal indentation in terms of the hereditary integral. Several types of viscoelastic problems are discussed in relation to the test techniques and analyses for determining the relaxation modulus E(t) and the creep compliance D(t). The superposition rules of time–temperature, penetration depth–temperature, and penetration depth–penetration rate are examined. The viscoelastic indentation tests (constant rate penetration test and constant load creep test) of amorphous Se are conducted at temperatures from 10 to 42 °C. The theoretical considerations and the test results encourage pyramidal indentation as an efficient microprobe for the viscoelastic characterization, in particular, of extremely small-size test specimens and ceramic, metal, and polymer thin films coated on substrate.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tabor, D., The Hardness of Metals (Clarendon Press, Oxford, United Kingdom, 1951).Google Scholar
2.Sakai, M., Shimizu, S., and Ishikawa, T., J. Mater. Res. 14, 1471 (1999).CrossRefGoogle Scholar
3.Sakai, M., J. Mater. Res. 14, 3630 (1999).CrossRefGoogle Scholar
4.Doerner, M.F. and Nix, W.D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
5.Pharr, G.M., Oliver, W.C., and Brotzen, F.R., J. Mater. Res. 3, 613 (1992).CrossRefGoogle Scholar
6.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 2475 (1992).CrossRefGoogle Scholar
7.Sakai, M., Acta. Metall. Mater. 41, 1751 (1993).CrossRefGoogle Scholar
8.Chu, S.N.G and Li, J.C.M, J. Mater. Sci. 12, 2200 (1977).CrossRefGoogle Scholar
9.De La Torre, A., Adeva, P., and Aballe, M., J. Mater. Sci. 26, 4351 (1991).CrossRefGoogle Scholar
10.Raman, V. and Berriche, R., J. Mater. Res. 7, 627 (1992).CrossRefGoogle Scholar
11.Chiang, D. and Li, J.C.M, J. Mater. Res. 9, 903 (1994).CrossRefGoogle Scholar
12.Douglas, R.W., Armstrong, W.L., Edward, J.P., and Hill, D., Glass Technol. 6, 52 (1973).Google Scholar
13.Cseh, G., Chinh, N.Q., Tasnadi, P., Szommer, P., and Juhasz, A., J. Mater. Sci. 32, 1773 (1997).Google Scholar
14.Poisl, W.H., Oliver, W.C., and Fabes, B.D., J. Mater. Res. 10, 2024 (1995).CrossRefGoogle Scholar
15.Kealen, N.M., J. Am. Ceram. Soc. 76, 904 (1993).CrossRefGoogle Scholar
16.Han, W-T. and Tomozawa, M., J. Am. Ceram. Soc. 73, 3629 (1990).Google Scholar
17.Radok, J.R.M, Q. Appl. Math. 15, 198 (1957).CrossRefGoogle Scholar
18.Lee, E.H. and Radok, J.R.M, J. Appl. Mech. 27, 438 (1960).CrossRefGoogle Scholar
19.Hunter, S.C., J. Mech. Phys. Solids 8, 219 (1960).CrossRefGoogle Scholar
20.Yang, W.H., J. Appl. Mech. 33, 395 (1966).CrossRefGoogle Scholar
21.Ting, T.C.T, J. Appl. Mech. 33, 845 (1966).CrossRefGoogle Scholar
22.Ting, T.C.T, J. Appl. Mech. 35, 248 (1968).CrossRefGoogle Scholar
23.Johnson, K.L., Contact Mechanics (Cambridge University Press, Cambridge, United Kingdom, 1985), Chaps. 2–4.CrossRefGoogle Scholar
24.Sneddon, I.N., Int. J. Eng. Sci. 3, 47 (1965).CrossRefGoogle Scholar
25.Shames, I.H. and Cozzarelli, F.A., Elastic and Inelastic Stress Analysis (Prentice Hall, Englewood Cliffs, NJ, 1992), Chap. 6.Google Scholar
26.Elmer, T.H. and Nordberg, M.E., Corning Res. 225 (1961).Google Scholar
27.Cukierman, M. and Uhlmann, D.R., J. Non-Cryst. Solids 12, 199 (1973).CrossRefGoogle Scholar
28.Stephens, R.B., J. Appl. Phys. 49, 5855 (1978).CrossRefGoogle Scholar
29.Eisemberg, A. and Tobolsky, A.V., J. Polym. Sci. 61, 483 (1962).CrossRefGoogle Scholar
30.Tobolsky, A.V., Owen, G.D.T, and Eisemberg, A., J. Colloid Sci. 17, 717 (1962).CrossRefGoogle Scholar
31.Graham, L.J. and Chang, R., J. Appl. Phys. 36, 2983 (1965).CrossRefGoogle Scholar
32.Ferry, J.D., Viscoelastic Properties of Polymers, 2nd ed. (John Wiley & Sons, New York, 1970), Chap. 11.Google Scholar
33.Williams, M.L., Landel, R.F., and Ferry, J.D., J. Am. Chem. Soc. 77, 3701 (1955).CrossRefGoogle Scholar
34.Schapery, R.A., Proc. 4th U.S. Natl. Congr. Appl. Mech. 2, 1075 (1962).Google Scholar
35.Sakai, M., Muto, H., and Haga, M., J. Am. Ceram. Soc. 79, 449 (1996).CrossRefGoogle Scholar