Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-18T12:05:46.308Z Has data issue: false hasContentIssue false

Pushing the detection limit of thin film magnetoelectric heterostructures

Published online by Cambridge University Press:  22 February 2017

Volker Röbisch
Affiliation:
Institute for Materials Science, Kiel University, Kiel 24143, Germany
Sebastian Salzer
Affiliation:
Institute of Electrical and Information Engineering, Kiel University, Kiel 24143, Germany
Necdet O. Urs
Affiliation:
Institute for Materials Science, Kiel University, Kiel 24143, Germany
Jens Reermann
Affiliation:
Institute of Electrical and Information Engineering, Kiel University, Kiel 24143, Germany
Erdem Yarar
Affiliation:
Institute for Materials Science, Kiel University, Kiel 24143, Germany
André Piorra
Affiliation:
Institute for Materials Science, Kiel University, Kiel 24143, Germany
Christine Kirchhof
Affiliation:
Institute for Materials Science, Kiel University, Kiel 24143, Germany
Enno Lage
Affiliation:
Institute for Materials Science, Kiel University, Kiel 24143, Germany
Michael Höft
Affiliation:
Institute of Electrical and Information Engineering, Kiel University, Kiel 24143, Germany
Gerhard U. Schmidt
Affiliation:
Institute of Electrical and Information Engineering, Kiel University, Kiel 24143, Germany
Reinhard Knöchel
Affiliation:
Institute of Electrical and Information Engineering, Kiel University, Kiel 24143, Germany
Jeffrey McCord
Affiliation:
Institute for Materials Science, Kiel University, Kiel 24143, Germany
Eckhard Quandt
Affiliation:
Institute for Materials Science, Kiel University, Kiel 24143, Germany
Dirk Meyners*
Affiliation:
Institute for Materials Science, Kiel University, Kiel 24143, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Composite magnetoelectrics implemented as thin film heterostructures are discussed in view of their applicability as highly sensitive magnetic field sensors. Here, either PZT or AlN served as piezoelectric component. The magnetostrictive phase consisted of layer systems based on FeCo or (Fe90Co10)78Si12B10. All functional layers were deposited with thicknesses of a few micrometers on Si cantilever structures with typical lateral dimensions of 25 mm by 2.2 mm. Magnetoelectric coefficients as large as 6900 V/cm Oe and a limit of detection as low as 1 pT/(Hz)1/2 were measured. Currently, the best result demonstrates a detection limit of 500 fT/(Hz)1/2 at 958 Hz frequency using a set of two sensors for external noise suppression. A frequency conversion technique is proposed to broaden the applicability of resonant magnetoelectric sensors to a wider frequency range. Finally, the achieved sensor performance is evaluated with regard to typical magnetic field amplitudes in medical applications.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Michael E. McHenry

This paper has been selected as an Invited Feature Paper.

References

REFERENCES

Nan, C-W., Bichurin, M.I., Dong, S., Viehland, D., and Srinivasan, G.J.: Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. Appl. Phys. 103, 031101 (2008).Google Scholar
Nan, T., Hui, Y., Rinaldi, M., and Sun, N.: Self-biased 215 MHz magnetoelectric NEMS resonator for ultra-sensitive DC magnetic field detection. Sci. Rep. 3, 1985 (2013).Google Scholar
Zhao, P., Zhao, Z., Hunter, D., Suchoski, R., Gao, C., Mathews, S., Wuttig, M., and Takeuchi, I.: Fabrication and characterization of all-thin-film magnetoelectric sensors. Appl. Phys. Lett. 94, 243507 (2009).Google Scholar
Lee, D.G., Kim, S.M., Yoo, Y.K., Han, J.H., Chun, D.W., Kim, Y-C., Kim, J., Hwang, K.S., Kim, T.S., Jo, W.W., Kim, H., Song, S-H., and Lee, J.H.: Ultra-sensitive magnetoelectric microcantilever at a low frequency. Appl. Phys. Lett. 101, 182902 (2012).Google Scholar
Lage, E., Kirchhof, C., Hrkac, V., Kienle, L., Jahns, R., Knöchel, R., Quandt, E., and Meyners, D.: Exchange biasing of magnetoelectric composites. Nat. Mater. 11, 523529 (2012).CrossRefGoogle ScholarPubMed
Piorra, A.: Ferroelektrische Schichten für magnetoelektrische Komposite (Ferroelectric Films for Magnetoelectric Composites). PhD Thesis, Christian-Albrechts-Universität zu Kiel, Germany, January 2014.Google Scholar
Ryu, J., Priya, S., Carazo, A.V., Uchino, K., and Kim, H-E.: Effect of the magnetostrictive layer on magnetoelectric properties in lead zirconate titanate/terfenol-D laminate composites. J. Am. Ceram. Soc. 84, 29052908 (2001).CrossRefGoogle Scholar
Dong, S., Zhai, J., Li, J., and Viehland, D.: Near-ideal magnetoelectricity in high-permeability magnetostrictive/piezofiber laminates with a (2-1) connectivity. Appl. Phys. Lett. 89, 252904 (2006).CrossRefGoogle Scholar
Onuta, T-D., Wang, Y., Long, C.J., and Takeuchi, I.: Energy harvesting properties of all-thin-film multiferroic cantilevers. Appl. Phys. Lett. 99, 203506 (2011).Google Scholar
Kirchhof, C., Krantz, M., Teliban, I., Jahns, R., Marauska, S., Wagner, B., Knöchel, R., Gerken, M., Meyners, D., and Quandt, E.: Giant magnetoelectric effect in vacuum. Appl. Phys. Lett. 102, 232905 (2013).Google Scholar
Jahns, R., Greve, H., Woltermann, E., Lage, E., Quandt, E., and Knöchel, R.: Magnetoelectric sensors for biomagnetic measurements. In 2011 IEEE International Workshop on Medical Measurements and Applications Proceedings (MeMeA) (held in Bari, Italy, May 30–31); pp. 107110.Google Scholar
Jahns, R., Greve, H., Woltermann, E., Quandt, E., and Knöchel, R.H.: Noise performance of magnetometers with resonant thin-film magnetoelectric sensors. IEEE Trans. Instrum. Meas. 60, 2995 (2011).Google Scholar
Yarar, E., Hrkac, V., Zamponi, C., Piorra, A., Kienle, L., and Quandt, E.: Low temperature aluminum nitride thin films for sensory applications. AIP Adv. 6(7), 075115 (2016).Google Scholar
Salzer, S., Jahns, R., Piorra, A., Teliban, I., Reermann, J., Höft, M., Quandt, E., and Knöchel, R.: Tuning fork for noise suppression in magnetoelectric sensors. Sens. Actuators, A 237, 9195 (2016).Google Scholar
Jahns, R., Greve, H., Woltermann, E., Quandt, E., and Knöchel, R.: Sensitivity enhancement of magnetoelectric sensors through frequency-conversion. Sens. Actuators, A. 183, 1621 (2012).Google Scholar
Shin, K-H., Inoue, M., and Arai, K-I.: Elastically coupled magneto-electric elements with highly magnetostrictive amorphous films and PZT substrates. Smart Mater. Struct. 9, 357361 (2000).CrossRefGoogle Scholar
Greve, H., Woltermann, E., Quenzer, H-J., Wagner, B., and Quandt, E.: Giant magnetoelectric coefficients in (Fe90Co10)78Si12B10-AlN thin film composites. Appl. Phys. Lett. 96, 182501 (2010).Google Scholar
Zabel, S., Kirchhof, C., Yarar, E., Meyners, D., Quandt, E., and Faupel, F.: Phase modulated magnetoelectric delta-E effect sensor for sub-nano Tesla magnetic fields. Appl. Phys. Lett. 107, 152402 (2015).Google Scholar
Piorra, A., Jahns, R., Teliban, I., Gugat, J.L., Gerken, M., Knöchel, R., and Quandt, E.: Magnetoelectric thin film composites with interdigital electrodes. Appl. Phys. Lett. 103, 032902 (2013).CrossRefGoogle Scholar
Röbisch, V., Yarar, E., Urs, N.O., Teliban, I., Knöchel, R., McCord, J., Quandt, E., and Meyners, D.: Exchange biased magnetoelectric composites for magnetic field sensor application by frequency conversion. J. Appl. Phys. 117, 17B513 (2015). (see also Supplementary Material).Google Scholar
Xing, Z., Zhai, J., Li, J., and Viehland, D.: Investigation of external noise and its rejection in magnetoelectric sensor design. J. Appl. Phys. 106, 024512 (2009).CrossRefGoogle Scholar
Zhuang, X., Cordier, C., Saez, S., Sing, M.L.C., Dolabdjian, C., Gao, J., Li, J.F., and Viehland, D.: Theoretical analysis of the intrinsic magnetic noise spectral density of magnetostrictive-piezoelectric laminated composites. J. Appl. Phys. 109, 124512 (2011).CrossRefGoogle Scholar
Li, M., Zhiguang, W., Wang, Y., Li, J., and Viehland, D.: Giant magnetoelectric effect in self-biased laminates under zero magnetic field. Appl. Phys. Lett. 102, 082404 (2013).CrossRefGoogle Scholar
Yang, S-C., Park, C-S., Cho, K-H., and Priya, S.: Self-biased magnetoelectric response in three-phase laminates. J. Appl. Phys. 108, 093706 (2010).Google Scholar
Tadahiko, K. and Isao, S.: Self Bias Magnetostrictive Material. Japanese Patent 09083037 A, March 28, 1997.Google Scholar
Zhang, J., Li, P., Wen, Y., He, W., Yang, A., Wang, D., Yang, C., and Lu, C.: Giant self-biased converse magnetoelectric effect in multiferroic heterostructure with single-phase magnetostrictive materials. Appl. Phys. Lett. 105, 172408 (2014).Google Scholar
Mandal, S.K., Sreenivasulu, G., Petrov, V.M., and Srinivasan, G.: Flexural deformation in a compositionally stepped ferrite and magnetoelectric effects in a composite with piezoelectrics. Appl. Phys. Lett. 96, 192502 (2010).Google Scholar
Laletin, U., Sreenivasulu, G., Petrov, V.M., Garg, T., Kulkarni, A.R., Venkataramani, N., and Srinivasan, G.: Hysteresis and remanence in magnetoelectric effects in functionally graded magnetostrictive-piezoelectric layered composites. Phys. Rev. B: Condens. Matter Mater. Phys. 85, 104404 (2012).CrossRefGoogle Scholar
Jing, W.Q. and Fang, F.: Stress-induced self-biasing of magnetoelectric coupling in embedded Ni/PZT/FeNi composite. Appl. Phys. Lett. 106, 212901 (2015).Google Scholar
Kolkholm, E.: The measurement of magnetostriction in ferromagnetic thin films. IEEE Trans. Mag. 12, 819821 (1976).Google Scholar
Jahns, R., Piorra, A., Lage, E., Kirchhof, C., Meyners, D., Gugat, J.L., Krantz, M., Gerken, M., Knöchel, R., and Quandt, E.: Giant magnetoelectric effect in thin-film composites. J. Am. Ceram. Soc. 96, 16731681 (2013).Google Scholar
Lage, E., Woltering, F., Quandt, E., and Meyners, D.: Exchange biased magnetoelectric composites for vector field magnetometers. J. Appl. Phys. 113, 17C725 (2013).CrossRefGoogle Scholar
Zhuang, X., Sing, M.L.C., Dolabdjian, C., Wang, Y., Finkel, P., Li, J., and Viehland, D.: Mechanical noise limit of a strain-coupled magneto (elasto) electric sensor operating under a magnetic or an electric field modulation. IEEE Sens. J. 15, 15751587 (2015).CrossRefGoogle Scholar
Salzer, S., Höft, M., Knöchel, R., Hayes, P., Yarar, E., Piorra, A., and Quandt, E.: Comparison of frequency conversion techniques for magnetoelectric sensors. Procedia Eng. 120, 940943 (2015).Google Scholar
Hayes, P., Salzer, S., Reermann, J., Yarar, E., Röbisch, V., Piorra, A., Meyners, D., Höft, M., Knöchel, R., Schmidt, G., and Quandt, E.: Electrically modulated magnetoelectric sensors. Appl. Phys. Lett. 108, 182902 (2016).Google Scholar
Urs, N.O., Teliban, I., Piorra, A., Knöchel, R., Quandt, E., and McCord, J.: Origin of hysteretic magnetoelastic behavior in magnetoelectric 2–2 composites. Appl. Phys. Lett. 105, 202406 (2014).Google Scholar
Xi, H., Qian, X., Lu, M.C., Mei, L., Rupprecht, S., Yang, Q.X., and Zhang, Q.M.: A room temperature ultrasensitive magnetoelectric susceptometer for quantitative tissue iron detection. Sci. Rep. 6, 29740 (2016).Google Scholar
Deep-Brain Stimulation for Parkinson’s Disease Study Group: Deep-brain stimulation of the subthalamic nucleus of the pars interna of the globus pallidus in Parkinson’s disease. N. Engl. J. Med. 345, 956963 (2001).Google Scholar
Sternickel, K. and Braginski, A.: Biomagnetism using SQUIDs: Status and perspectives. Supercond. Sci. Technol. 19, S160S171 (2006).Google Scholar
Nowak, H.: Biomagnetic instrumentation. In Magnetism in Medicine, Andrä, W. and Nowak, H., eds. (Wiley-VCH, Berlin, Germany, 1998); pp. 88135.Google Scholar
Wikswo, J.P. Jr.: SQUID magnetometers for biomagnetism and nondestructive testing: Important questions and initial answers. IEEE Trans. Appl. Supercond. 5, 74120 (1995).CrossRefGoogle Scholar
Wang, K., Tajima, S., Song, D., Hamada, N., Cai, C., and Uchiyama, T.: Auditory evoked field measurement using magneto-impedance sensors. J. Appl. Phys. 117, 17B306 (2015).CrossRefGoogle Scholar
Mohri, Y., Uchiyama, T., Yamada, M., and Mohri, K.: Detection of back magneto-cardiogram for heart disease using pico-Tesla resolution amorphous wire magneto-impedance sensor. In Session 2A11a SC4: Recent Advances in Magneto-impedance Sensors (2014); p. 551.Google Scholar
Sander, T.H., Preusser, J., Mhaskar, R., Kitching, J., Trahms, L., and Knappe, S.: Magnetoencephalography with a chip-scale atomic magnetometer. Biomed. Opt. Express 3, 981990 (2012).Google Scholar
Alem, O., Sander, T.H., Mhaskar, R., LeBlanc, J., Eswaran, H., Steinhoff, U., Okada, Y., Kitching, J., Trahms, L., and Knappe, S.: Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers. Phys. Med. Biol. 60, 4797 (2015).CrossRefGoogle ScholarPubMed
Schuepbach, W.M.M., Rau, J., Knudsen, K., Volkmann, J., Krack, P., Timmermann, L., Hälbig, T.D., Hesekamp, H., Navarro, S.M., Meier, N., Falk, D., Mehdorn, M., Paschen, S., Maarouf, M., Barbe, M.T., Fink, G.R., Kupsch, A., Gruber, D., Schneider, G-H., Seigneuret, E., Kistner, A., Chaynes, P., Ory-Magne, F., Brefel Courbon, C., Vesper, J., Schnitzler, A., Wojtecki, L., Houeto, J-L., Bataille, B., Maltête, D., Damier, P., Raoul, S., Sixel-Doering, F., Hellwig, D., Gharabaghi, A., Krüger, R., Pinsker, M.O., Amtage, F., Régis, J-M., Witjas, T., Thobois, S., Mertens, P., Kloss, M., Hartmann, A., Oertel, W.H., Post, B., Speelman, H., Agid, Y., Schade-Brittinger, C., and Deuschl, G.: Neurostimulation for Parkinson’s disease with early motor complications. N. Engl. J. Med. 368, 610622 (2013).CrossRefGoogle ScholarPubMed
Deuschl, G. and Agid, Y.: Subthalamic neurostimulation for Parkinson’s disease with early fluctuations: Balancing the risks and benefits. Lancet Neurol. 12, 10251034 (2013).Google Scholar
Supplementary material: File

Röbisch supplementary material

Table S1

Download Röbisch supplementary material(File)
File 62 KB