Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T05:13:00.932Z Has data issue: false hasContentIssue false

Pulsed laser deposition of oriented V2O5 thin films

Published online by Cambridge University Press:  31 January 2011

Jeanne M. McGraw
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401
John D. Perkins
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401
Falah Hasoon
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401
Philip A. Parilla
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401
Chollada Warmsingh
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401
David S. Ginley
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401
Eli Mateeva
Affiliation:
Colorado School of Mines, 1500 Illinois St., Golden, Colorado 80401
Dennis W. Readey
Affiliation:
Colorado School of Mines, 1500 Illinois St., Golden, Colorado 80401
Get access

Abstract

We have found that by varying only the substrate temperature and oxygen pressure five different crystallographic orientations of V2O5 thin films can be grown, ranging from amorphous to highly textured crystalline. Dense, phase-pure V2O5 thin films were grown on SnO2/glass substrates and amorphous quartz substrates by pulsed laser deposition over a wide range of temperatures and oxygen pressures. The films' microstructure, crystallinity, and texturing were characterized by electron microscopy, x-ray diffraction, and Raman spectroscopy. Temperature and oxygen pressure appeared to play more significant roles in the resulting crystallographic texture than did the choice of substrate. A growth map summarizes the results and delineates the temperature and O2 pressure window for growing dense, uniform, phase-pure V2O5 films.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baba, M., Kumagai, N., Kobayashi, H., Nakano, O., and Nishidate, K., Electrochemical and Solid-State Letters 2(7), 320 (1999).CrossRefGoogle Scholar
2. Lee, S-H., Liu, P., Tracy, C.E., and Benson, D.K., Electrochemical and Solid-State Letters 2(9), 425 (1999).CrossRefGoogle Scholar
3. Baudry, P., Aegerter, M.A., Deroo, D., and Valla, B., J. Electrochem. Soc. 138, 460 (1991).CrossRefGoogle Scholar
4. Bates, J.B., Gruzalski, G.R., Dudney, N.J., Luck, C., and Yu, X., Solid State Ionics 70/71, 619 (1994).CrossRefGoogle Scholar
5. Benmoussa, M., Ibnouelghazi, E., Bennouna, A., and Ameziane, E.L., Thin Solid Films 265, 22 (1995).CrossRefGoogle Scholar
6. Talledo, A. and Granqvist, C.G., J. Appl. Phys. 77, 4655 (1995).CrossRefGoogle Scholar
7. Talledo, A. and Granqvist, C.G., J. Phys. D: Appl. Phys. 27, 2445 (1994).CrossRefGoogle Scholar
8. Ramana, C.V., Hussain, O.M., Srinivaulu Naidu, B., and Reddy, P.J., Thin Solid Films 305, 219 (1997).CrossRefGoogle Scholar
9. Julien, C., Guesdon, J.P., Gorenstein, A., Khelfa, A., and Ivanov, I., J. Mater. Sci. Lett. 14, 934 (1995).CrossRefGoogle Scholar
10. Shibuya, M., Yamamura, S., Matsue, T., and Uchida, I., Chem. Lett. 749 (1995).CrossRefGoogle Scholar
11. Liu, P., Zhang, J-G., Turner, J.A., Tracy, C.E., Benson, D.K., and Bhattacharya, R.N., Solid State Ionics 111, 145 (1998).CrossRefGoogle Scholar
12. Barboux, P., Baffier, N., Morineau, R., and Livage, J., Solid State Ionics 9–10, 1073 (1983).CrossRefGoogle Scholar
13. Abello, L., Husson, E., Repelin, Y., and Lucazeau, G., J. Solid State Chem. 56, 379 (1985).CrossRefGoogle Scholar
14. West, K., Zachau-Christiansen, B., Jacobsen, T., and Skaarup, S., Electrochim. Acta 38, 1215 (1993).CrossRefGoogle Scholar
15. Le, D.B., Passerini, S., Tipton, A.L., Owens, B.B., and Smyrl, W.H., J. Electrochem. Soc. 142, L102 (1995).CrossRefGoogle Scholar
16. Passerini, S., Chang, D., Chu, X., Le, D.B., and Smyrl, W.H., Chem. Mater. 7, 780 (1995).CrossRefGoogle Scholar
17. Spahr, M.E., Stoschilzki-Billerli, P., Nesper, R., Haas, O., and Novak, P., J. Electrochem. Soc. 146, 2780 (1999).CrossRefGoogle Scholar
18. Surca, A., Orel, B., Drazic, G., and Pihlar, B., J. Electrochem. Soc. 146, 232 (1999).CrossRefGoogle Scholar
19. Bae, J-S. and Pyun, S-I., Solid State Ionics 90, 251 (1996).CrossRefGoogle Scholar
20. Andrukaitis, E., Jacobs, P.W.M, and Lorimer, J.W., Solid State Ionics 27, 19 (1988).CrossRefGoogle Scholar
21. McGraw, J.M., Perkins, J.D., Zhang, J-G., Liu, P., Parilla, P.A., Turner, J., Schulz, D.L., Curtis, C.J., and Ginley, D.S., Solid State Ionics 113–115, 407 (1998).CrossRefGoogle Scholar
22. Pulsed Laser Deposition of Thin Films, edited by D.B. Chrisey and G.K. Hubler (John Wiley, New York, 1994), pp. v613.Google Scholar
23. Contour, J.P., Sant, C., Ravelosona, D., Dolin, C., Perriere, J., Ranno, L., Auvray, P., and Caulet, J., Appl. Surf. Sci. 75, 252 (1994).CrossRefGoogle Scholar
24. Linker, G., Xi, X.X., Meyer, O., Li, Q., and Geerk, J., Solid State Commun. 69, 249 (1989).CrossRefGoogle Scholar
25. Ramesh, R., Chang, C.C., Ravi, T.S., Hwang, D.M., Inam, A., Xi, X.X., Li, Q., Wu, X.D., and Venkatesan, T., Appl. Phys. Lett. 57, 1064 (1990).CrossRefGoogle Scholar
26. McGraw, J.M., Bahn, C.S., Parilla, P.A., Perkins, J.D., Readey, D.W., and Ginley, D.S., Electrochim. Acta 45(1–2), 187 (1999).CrossRefGoogle Scholar
27. Li, X. (private communication).Google Scholar
28. Clauws, P., Broeckx, J., and Vennik, J., Phys. Status Solidi B 131, 459 (1985).CrossRefGoogle Scholar