Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-07T18:26:08.819Z Has data issue: false hasContentIssue false

Pseudo-binary phase diagram for Zr-based in situ β phase composites

Published online by Cambridge University Press:  03 March 2011

S.Y. Lee*
Affiliation:
Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011
C.P. Kim
Affiliation:
Department of Materials Science, California Institute of Technology, Pasadena, California 91125
J.D. Almer
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439
U. Lienert
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439
E. Ustundag
Affiliation:
Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011
W.L. Johnson
Affiliation:
Department of Materials Science, California Institute of Technology, Pasadena, California 91125
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The pseudo-binary (quasi-equilibrium) phase diagram for Zr-based bulk metallic glasses with crystalline in situ precipitates (β phase) has been constructed from high-temperature phase information and chemical composition analysis. The phase evolution was detected in situ by high-energy synchrotron x-ray diffraction followed by Rietveld analysis of the data for volume fraction estimation. The phase diagram delineates phase fields and allows the control of phase fractions. Combined with related previous work by the authors, this diagram offers a unique opportunity to control both the morphology and volume of the dendritic β phase precipitates to enhance the properties of the composites.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Peker, A.: Formation and characterization of bulk metallic glasses, Ph.D. Thesis, California Institute of Technology, Pasadena, CA (1994), p. 57.Google Scholar
2Conner, R.D., Rosakis, A.J., Johnson, W.L., and Owen, D.M.: Fracture toughness determination for a beryllium-bearing bulk metallic glass. Scripta Mater. 37, 1373 (1997).CrossRefGoogle Scholar
3Gilbert, C.J., Ritchie, R.O., and Johnson, W.L.: Fracture toughness and fatigue-crack propagation in a Zr–Ti–Ni–Cu–Be bulk metallic glass. Appl. Phys. Lett. 71, 476 (1997).CrossRefGoogle Scholar
4Johnson, W.L.: Fundamental aspects of bulk metallic glass formation in multicomponent alloys, in Metastable, Mechanically Alloyed and Nanocrystalline Materials, Pts. 1 and 2 Vol. 225 (1996), p. 35.Google Scholar
5Choi-Yim, H., Busch, R., Koster, U., and Johnson, W.L.: Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 47, 2455 (1999).CrossRefGoogle Scholar
6Choi-Yim, H., Schroers, J., and Johnson, W.L.: Microstructures and mechanical properties of tungsten wire/particle reinforced Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix composites. Appl. Phys. Lett. 80, 1906 (2002).CrossRefGoogle Scholar
7Clausen, B., Lee, S.Y., Ustundag, E., Aydiner, C.C., Conner, R.D., and Bourke, M.A.M.: Compressive yielding of tungsten fiber reinforced bulk metallic glass composites. Scripta Mater. 49, 123 (2003).CrossRefGoogle Scholar
8Conner, R.D., Dandliker, R.B., and Johnson, W.L.: Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites. Acta Mater. 46, 6089 (1998).CrossRefGoogle Scholar
9Hays, C.C., Kim, C.P., and Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).CrossRefGoogle ScholarPubMed
10Lee, S.Y., Clausen, B., Ustundag, E., Choi-Yim, H., Aydiner, C.C., and Bourke, M.A.M.: Compressive behavior of wire reinforced bulk metallic glass matrix composites. Mater. Sci. Eng., A 399, 128 (2005).CrossRefGoogle Scholar
11Clausen, B., Lee, S.Y., Ustundag, E., Kim, C.P., Brown, D.W., and Bourke, M.A.M.: Deformation of in-situ-reinforced bulk metallic glass matrix composites. Mater. Sci. Forum 404–407, 553 (2002).CrossRefGoogle Scholar
12Hays, C.C., Kim, C.P., and Johnson, W.L.: Improved mechanical behavior of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Mater. Sci. Eng., A 304, 650 (2001).CrossRefGoogle Scholar
13Szuecs, F., Kim, C.P., and Johnson, W.L.: Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite. Acta Mater. 49, 1507 (2001).CrossRefGoogle Scholar
14Clausen, B., Lee, S.Y., Ustundag, E., Kim, C.P., Brown, D.W., and Bourke, M.A.M.: Compressive deformation of in situ formed bulk metallic glass composites. Scripta Mater. 54, 343 (2006).CrossRefGoogle Scholar
15Kim, C.P.: Ductile phase reinforced bulk metallic glass composites formed by chemical partitioning, Ph.D. thesis, California Institute of Technology, Pasadena, CA (2001), p. 48.Google Scholar
16Larson, A.C. and Von Dreele, R.B.: GSAS-General Structure Analysis System, LAUR 86-748 (Los Alamos National Laboratory, Los Alamos, NM, 1986).Google Scholar
17Rietveld, H.M.: Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 22, 151 (1967).CrossRefGoogle Scholar
18Cullity, B.D.: Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1978), p. 407.Google Scholar
19Lee, S.Y.: Deformation mechanisms of bulk metallic glass matrix composites, Ph.D. Thesis, California Institute of Technology, Pasadena, CA (2005), p. 97.Google Scholar
20 Titanium-zirconium, in The Handbook of Binary phase diagrams Vol. 5, edited by Moffat, W.G. (General Electric Company, Corporate Research and Development, New York, 1976).Google Scholar
21Mukherjee, S.: Study of crystallization behavior, kinetics and thermodynamics of bulk metallic glasses using noncontact electrostatic levitation technique, Ph.D. thesis, California Institute of Technology, Pasadena, CA (2005), p. 117.Google Scholar
22Kim, Y.J., Busch, R., Johnson, W.L., Rulison, A.J., and Rhim, W.K.: Experimental determination of a time-temperature-transformation diagram of the undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy using the containerless electrostatic levitation processing technique. Appl. Phys. Lett. 68, 1057 (1996).CrossRefGoogle Scholar