Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T10:26:58.320Z Has data issue: false hasContentIssue false

Protein-functionalized WO3 nanorods–based impedimetric platform for sensitive and label-free detection of a cardiac biomarker

Published online by Cambridge University Press:  06 February 2019

Deepika Sandil
Affiliation:
Advanced Sensor Laboratory, Department of Applied Physics, Delhi Technological University, Delhi 110042, India; and Department of Applied Physics, Bhagwan Parshuram Institute of Technology, Delhi 110089, India
Suresh C. Sharma
Affiliation:
Advanced Sensor Laboratory, Department of Applied Physics, Delhi Technological University, Delhi 110042, India
Nitin K. Puri*
Affiliation:
Advanced Sensor Laboratory, Department of Applied Physics, Delhi Technological University, Delhi 110042, India
*
a)Address all correspondence to this author. e-mail: [email protected], [email protected]
Get access

Abstract

We report the development of a sensitive and a label-free electrochemical immunosensing platform for the detection of cardiac biomarker troponin I (cTnI) using tungsten trioxide nanorods (WO3 NRs). The low-temperature hydrothermal technique was employed for the controlled synthesis of WO3 NRs. Thin films of 3-aminopropyltriethoxy saline (APTES)-functionalized WO3 NRs were deposited on indium tin oxide (ITO)-coated glass substrate (0.5 cm × 1 cm) using electrophoretic deposition technique. The covalent immobilization of cTnI antibody onto functionalized WO3 NRs electrode was accomplished using EDC-NHS [1-(3-(dimethylamino)-propyl)-3-ethylcarbodiimide hydrochloride and N-hydroxysulfosuccinimide] chemistry. The structural and morphological characterizations of WO3 NRs and functionalized WO3 NRs were studied using X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and electrochemical techniques. The impedimetric response study of the proposed immunosensor demonstrates high sensitivity [6.81 KΩ mL·cm2)] in a linear detection range of 0.01–10 ng/mL. The excellent selectivity, good reproducibility, and long-term stability of the proposed immunosensing platform indicate WO3 NRs as a suitable platform for the development of a point-of-care biosensing device for cardiac detection.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Solanki, P.R., Kaushik, A., Agrawal, V.V., and Malhotra, B.D.: Nanostructured metal oxide-based biosensors. NPG Asia Mater. 3, 17 (2011).CrossRefGoogle Scholar
Walcarius, A., Minteer, S.D., Wang, J., Lin, Y., and Merkoçi, A.: Nanomaterials for bio-functionalized electrodes: Recent trends. J. Mater. Chem. B 1, 4878 (2013).CrossRefGoogle Scholar
Wang, F., Song, L., Zhang, H., Luo, L., Wang, D., and Tang, J.: One-dimensional metal-oxide nanostructures for solar photocatalytic water-splitting. J. Electron. Mater. 46, 4716 (2017).CrossRefGoogle Scholar
Fang, X., Hu, L., Ye, C., and Zhang, L.: One-dimensional inorganic semiconductor nanostructures: A new carrier for nanosensors. Pure Appl. Chem. 82, 2185 (2010).CrossRefGoogle Scholar
Solanki, P.R., Singh, J., Rupavali, B., Tiwari, S., and Malhotra, B.D.: Bismuth oxide nanorods based immunosensor for mycotoxin detection. Mater. Sci. Eng., C 70, 564 (2017).CrossRefGoogle ScholarPubMed
Galvin, P., Padmanathan, N., Razeeb, K.M., Rohan, J.F., Nagle, L.C., Wahl, A., Moore, E., Messina, W., Twomey, K., and Ogurtsov, V.: Nanoenabling electrochemical sensors for life sciences applications. J. Mater. Res. 32, 2883 (2017).CrossRefGoogle Scholar
Augustine, S., Joshi, A.G., Yadav, B.K., Mehta, A., Kumar, P., Renugopalakrishanan, V., and Malhotra, B.D.: An emerging nanostructured molybdenum trioxide-based biocompatible sensor platform for breast cancer biomarker detection. MRS Commun. 8, 668 (2018).CrossRefGoogle Scholar
Zhao, Y., Yan, X., Kang, Z., Fang, X., Zheng, X., Zhao, L., Du, H., and Zhang, Y.: Zinc oxide nanowires-based electrochemical biosensor for L-lactic acid amperometric detection. J. Nanopart. Res. 16, 2398 (2014).CrossRefGoogle Scholar
Yan, C., Kang, W., Wang, J., Cui, M., Wang, X., Foo, C.Y., Chee, K.J., and Lee, P.S.: Stretchable and wearable electrochromic devices. ACS Nano 8, 316 (2013).CrossRefGoogle ScholarPubMed
Szilágyi, I.M., Fórizs, B., Rosseler, O., Szegedi, Á., Németh, P., Király, P., Tárkányi, G., Vajna, B., Varga-Josepovits, K., and László, K.: WO3 photocatalysts: Influence of structure and composition. J. Catal. 294, 119 (2012).CrossRefGoogle Scholar
Sandil, D., Kumar, S., Arora, K., Srivastava, S., Malhotra, B., Sharma, S., and Puri, N.K.: Biofunctionalized nanostructured tungsten trioxide based sensor for cardiac biomarker detection. Mater. Lett. 186, 202 (2017).CrossRefGoogle Scholar
Zheng, H., Tachibana, Y., and Kalantar-zadeh, K.: Dye-sensitized solar cells based on WO3. Langmuir 26, 19148 (2010).CrossRefGoogle ScholarPubMed
Shi, J., Hu, G., Sun, Y., Geng, M., Wu, J., Liu, Y., Ge, M., Tao, J., Cao, M., and Dai, N.: WO3 nanocrystals: Synthesis and application in highly sensitive detection of acetone. Sens. Actuators, B 156, 820 (2011).CrossRefGoogle Scholar
Santos, L., Silveira, C.M., Elangovan, E., Neto, J.P., Nunes, D., Pereira, L., Martins, R., Viegas, J., Moura, J.J., and Todorovic, S.: Synthesis of WO3 nanoparticles for biosensing applications. Sens. Actuators, B 223, 186 (2016).CrossRefGoogle Scholar
Cai, Z-X., Li, H-Y., Ding, J-C., and Guo, X.: Hierarchical flowerlike WO3 nanostructures assembled by porous nanoflakes for enhanced NO gas sensing. Sens. Actuators, B 246, 225 (2017).CrossRefGoogle Scholar
Zhou, Y., Yang, L., Li, S., and Dang, Y.: A novel electrochemical sensor for highly sensitive detection of bisphenol A based on the hydrothermal synthesized Na-doped WO3 nanorods. Sens. Actuators, B 245, 238 (2017).CrossRefGoogle Scholar
Liu, J., Margeat, O., Dachraoui, W., Liu, X., Fahlman, M., and Ackermann, J.: Gram-scale synthesis of ultrathin tungsten oxide nanowires and their aspect ratio-dependent photocatalytic activity. Adv. Funct. Mater. 24, 6029 (2014).CrossRefGoogle Scholar
Ali, J., Najeeb, J., Ali, M.A., Aslam, M.F., and Raza, A.: Biosensors: Their fundamentals, designs, types and most recent impactful applications: A review. J. Biosens. Bioelectron. 8, 1 (2017).CrossRefGoogle Scholar
Ko, S., Kim, B., Jo, S-S., Oh, S.Y., and Park, J-K.: Electrochemical detection of cardiac troponin I using a microchip with the surface-functionalized poly(dimethylsiloxane) channel. Biosens. Bioelectron. 23, 51 (2007).CrossRefGoogle ScholarPubMed
Prakash, M.D., Singh, S., Sharma, C., and Krishna, V.S.R.: Electrochemical detection of cardiac biomarkers utilizing electrospun multiwalled carbon nanotubes embedded SU-8 nanofibers. Electroanalysis 29, 380 (2017).CrossRefGoogle Scholar
Ronkainen, N.J., Halsall, H.B., and Heineman, W.R.: Electrochemical biosensors. Chem. Soc. Rev. 39, 1747 (2010).CrossRefGoogle ScholarPubMed
Malhotra, B.D., Srivastava, S., Ali, M.A., and Singh, C.: Nanomaterial-based biosensors for food toxin detection. Appl. Biochem. Biotechnol. 174, 880 (2014).CrossRefGoogle ScholarPubMed
Qureshi, A., Gurbuz, Y., and Niazi, J.H.: Biosensors for cardiac biomarkers detection: A review. Sens. Actuators, B 171, 62 (2012).CrossRefGoogle Scholar
Han, X., Li, S., Peng, Z., Othman, A.M., and Leblanc, R.: Recent development of cardiac troponin I detection. ACS Sens. 1, 106 (2016).CrossRefGoogle Scholar
Keller, T., Zeller, T., Peetz, D., Tzikas, S., Roth, A., Czyz, E., Bickel, C., Baldus, S., Warnholtz, A., and Fröhlich, M.: Sensitive troponin I assay in early diagnosis of acute myocardial infarction. N. Engl. J. Med. 361, 868 (2009).CrossRefGoogle ScholarPubMed
Kumar, S., Kumar, S., Augustine, S., and Malhotra, B.D.: Protein functionalized nanostructured zirconia based electrochemical immunosensor for cardiac troponin I detection. J. Mater. Res. 32, 2966 (2017).CrossRefGoogle Scholar
Zhao, W., Cui, B., Qiu, H., Chen, P., and Wang, Y.: Multifunctional Fe3O4@WO3@mSiO2–APTES nanocarrier for targeted drug delivery and controllable release with microwave irradiation triggered by WO3. Mater. Lett. 169, 185 (2016).CrossRefGoogle Scholar
Tong, M., Dai, G., Wu, Y., He, X., and Gao, D.: WO3 thin film prepared by PECVD technique and its gas sensing properties to NO2. J. Mater. Sci. 36, 2535 (2001).CrossRefGoogle Scholar
Sandil, D., Srivastava, S., Malhotra, B., Sharma, S., and Puri, N.K.: Biofunctionalized tungsten trioxide-reduced graphene oxide nanocomposites for sensitive electrochemical immunosensing of cardiac biomarker. J. Alloys Compd. 763, 102110 (2018).CrossRefGoogle Scholar
Majoul, N., Aouida, S., and Bessaïs, B.: Progress of porous silicon APTES-functionalization by FTIR investigations. Appl. Surf. Sci. 331, 388 (2015).CrossRefGoogle Scholar
Ata, M., Liu, Y., and Zhitomirsky, I.: A review of new methods of surface chemical modification, dispersion and electrophoretic deposition of metal oxide particles. RSC Adv. 4, 22716 (2014).CrossRefGoogle Scholar
Srivastava, S., Abraham, S., Singh, C., Ali, M.A., Srivastava, A., Sumana, G., and Malhotra, B.D.: Protein conjugated carboxylated gold@reduced graphene oxide for aflatoxin B1 detection. RSC Adv. 5, 5406 (2015).CrossRefGoogle Scholar
Kumar, S., Kumar, S., Tiwari, S., Augustine, S., Srivastava, S., Yadav, B.K., and Malhotra, B.D.: Highly sensitive protein functionalized nanostructured hafnium oxide based biosensing platform for non-invasive oral cancer detection. Sens. Actuators, B 235, 1 (2016).CrossRefGoogle Scholar
Fathil, M., Arshad, M.M., Ruslinda, A., Gopinath, S.C., Adzhri, R., Hashim, U., and Lam, H.: Substrate-gate coupling in ZnO-FET biosensor for cardiac troponin I detection. Sens. Actuators, B 242, 1142 (2017).CrossRefGoogle Scholar
Negahdary, M., Behjati-Ardakani, M., Sattarahmady, N., Yadegari, H., and Heli, H.: Electrochemical aptasensing of human cardiac troponin I based on an array of gold nanodumbbells—Applied to early detection of myocardial infarction. Sens. Actuators, B 252, 62 (2017).CrossRefGoogle Scholar
Periyakaruppan, A., Gandhiraman, R.P., Meyyappan, M., and Koehne, J.E.: Label-free detection of cardiac troponin-I using carbon nanofiber based nanoelectrode arrays. Anal. Chem. 85, 3858 (2013).CrossRefGoogle ScholarPubMed