Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-19T09:37:56.122Z Has data issue: false hasContentIssue false

Prospects of chemical vapor grown silicon carbide thin films using halogen-free single sources in nuclear reactor applications: A review

Published online by Cambridge University Press:  31 July 2012

Jayaprakasam Selvakumar*
Affiliation:
Powder Metallurgy Division, Bhabha Atomic Research Centre, Navi Mumbai 400 705, India
Dakshinamoorthy Sathiyamoorthy
Affiliation:
Powder Metallurgy Division, Bhabha Atomic Research Centre, Navi Mumbai 400 705, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Next-generation fission and fusion nuclear reactor materials will be exposed to very high temperatures, intense neutron radiation, corrosive environments, and, mostly, all three at once. Grand opening will be given to the material, if they have stability at high temperature operating favorable in the extreme environments, self-healing, thermal as well as irradiation properties. Owing to the superior properties of silicon carbide, nuclear scientists are closely evaluating SiC-based materials for various applications in nuclear reactors. In the present perspective, relevant properties, challenging issues, and recommendations are emphasized. Based on our recent experiments, attempt to solve various uses on SiC-based materials in nuclear applications is described in detail.

Type
Review
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Katoh, Y. and Cozzi, A.: Ceramics in Nuclear Applications: Silicon Carbide and Carbon-Based Materials for Nuclear Energy Applications (John Wiley & Sons, Inc., Publication, Vol. 30, Hoboken, NJ, 2010).Google Scholar
Snead, L.L., Nozawa, T., Katoh, Y., Byun, T-S., Kondo, S., and Petti, D.A.: Handbook of SiC properties for fuel performance modeling. J. Nucl. Mater. 371, 329 (2007).CrossRefGoogle Scholar
Katoh, Y., Snead, L.L., Nozawa, T., Morley, N.B., and Windes, W.E.: Advanced radiation-resistant ceramic composites. Adv. Sci. Technol. 45, 1915 (2006).CrossRefGoogle Scholar
Krstic, V.D., Vlajic, M.D., and Verrall, R.A.: Silicon carbide ceramics for nuclear application. Key Eng. Mater. 122124, 387 (1996).Google Scholar
Nishitani, T., Tanigawa, H., Nozawa, T., Jitsukawa, S., Nakamidhi, M., Hoshino, T., Yamanishi, T., Baluc, N., Moslang, A., Lindou, R., Tosti, S., Hodgson, E.R., Lorenzo, S.C., Kohyama, A., Kimura, A., Shikama, T., Hayashi, K., and Araki, M.: Recent progress in blanket materials development in the broader approach activities. J. Nucl. Mater. 417, 1331 (2011).Google Scholar
Lopez-Honorato, E., Tan, J.. Meadows, P.J., Marsh, G., and Xiao, P.: TRISO coated fuel particles with enhanced SiC properties. J. Nucl. Mater. 392, 219 (2009).Google Scholar
Carpenter, D., Ahn, K., Kao, K., Kao, S.P., Heizlar, P., and Kazimi, S.M.: Assessment of silicon carbide cladding for high performance light water reactors. Nuclear Fuel Cycle Program (CANES Reports), MIT-NFC-TR-098 (2007).Google Scholar
Kordina, O. and Saddow, S.E.: Advances in Silicon Carbide Processing and Applications, edited by Saddow, S.E. and Aggarwal, A. (ARTECH House, Inc., Norwood, MA, 2004); p. 1.Google Scholar
Mehregany, M., Zorman, C.A., Roy, S., Fleischman, A.J., Wu, C.H., and Rajan, N.: Heteroepitaxial growth of single 3C-SiC thin films on Si(100) substrates using single-source precursor of hexamethyldisilane by APCVD. Int. Mater. Rev. 45, 85 (2000).Google Scholar
Andrievski, R.A.: Synthesis, structure and properties of nanosized silicon carbide. Rev. Adv. Mater. Sci. 22, 1 (2009).Google Scholar
Acır, A. and Altunok, T.: Utilization of TRISO fuel with LWR spent fuel in fusion-fission hybrid reactor system. J. Fusion Energy 29, 436 (2010).Google Scholar
Powers, J.J. and Wirth, B.: A review of TRISO fuel performance models. J. Nucl. Mater. 405, 74 (2010).Google Scholar
van Rooijen, W.F.G.: Improving Fuel Cycle Design and safety Characteristics of a Gas Cooled Fast Reactor (IOS Press, Amsterdam, Netherlands, 2006).Google Scholar
Nabielek, H., van der Menwe, H., Fachinger, J., Verfondern, K., von Lensa, W., Grambow, B., and de Visser-Tynova, E.: Ceramic Coated Particles for Safe Operation in HTRs and in Long-Term Storage, in Ceramics in Nuclear Applications (John Wiley & Sons, Inc., Hoboken, NJ, 2010).Google Scholar
Krueger, K.J. and Ivens, G.P.: Safety-Related Experiences With the AVR Reactor, Specialists’ Meeting on Safety and Accident Analysis for Gas-Cooled Reactors (IAEA-TECDOC-358, Oak Ridge, TN, 1985); p. 61.Google Scholar
Brandes, S.: Core Physics Test of THTR Pebble Bed Core at Zero Power, Specialists’ Meeting on Safety and Accident Analysis for Gas-Cooled Reactors (IAEA-TECDOC-358, Oak Ridge, TN, 1985); p. 285.Google Scholar
Mills, P., Soto, R., and Gibbs, G.: Next Generation Nuclear Plant Pre-conceptual Design Report (INL/EXT-07–12967 Idaho National Laboratory, Idaho Falls, ID, 2007).Google Scholar
Boer, B., Sen, R.S., Pope, M.A., Ougouag, A.M.: Material performance of fully-ceramic micro-encapsulated fuel under selected LWR design basis scenarios: final report (INL/EXT-11-23313, Idaho National Laboratory, Idaho Falls, ID, 2011).CrossRefGoogle Scholar
International Atomic Energy Agency: Delayed Hydride Cracking of Zirconium Alloy Fuel Cladding (IAEA-TECDOC-1649, Vienna, Austria, 2010).Google Scholar
Causey, A.R., Urbanic, V.F., and Coleman, C.E.: In-reactor oxidation of crevices and cracks in cold-worked Zr-2.5 wt% Nb. J. Nucl. Mater. 71, 25 (1977).Google Scholar
Baney, R.H., Tulenko, J.S., and Butt, D.: An Innovative Ceramic Corrosion Protection System for Zircaloy Cladding (University of Florida, NERI Research Project, DE-FG03-99SF21882, Gainesville, FL, 2003).Google Scholar
Chenga, T., Baneya, R.H., and Tulenkob, J.: The effect of oxygen, carbon dioxide and water vapor on reprocessing silicon carbide inert matrix fuels by corrosion in molten potassium carbonate. J. Nucl. Mater. 411, 126 (2011).Google Scholar
Jiang, W., Jiao, L., and Wang, H.: Transition from irradiation-induced amorphization to crystalline in nanocrystalline silicon carbide. J. Am. Ceram. Soc. 94, 4127 (2011).CrossRefGoogle Scholar
Shockley, W.: Method of growing silicon carbide crystals. U.S. Patent No. 3053635, (1962).Google Scholar
Fraga, M.A., Pessoa, R.S., Maciel, H.S., Massi, M., and Oliveiria, I.d.C.: Technology roadmap for development of SiC sensors at plasma processes laboratory. J. Aerosp. Technol. Manag. Sao Jose dos Campos. 2, 219 (2010).Google Scholar
Myers, D.R., Cheng, K.B., Jamshidi, B., Azevedo, R.G., Senesky, D.G., Wijesundara, M.B.J., and Pisano, A.P.: Silicon carbide resonant tuning fork for microsensing applications in high-temperature and high G-shock environments. J. Micro/Nanolith. MEMS MOEMS. 8, 021116 (2009).Google Scholar
Jia, Y.B., Zhuang, G.L., and Wang, J.G.: Electric field induced silicon carbide nanotubes: A promising gas sensor for detecting SO2. J. Phys. D: Appl. Phys. 45, 065305 (2012).Google Scholar
Franceschini, F. and Ruddy, F.H.: Silicon carbide neutron detectors, properties and applications of silicon carbide, edited by R. Gerhardt (InTech, Rijeka, Croatia, 2011).CrossRefGoogle Scholar
Kordina, O. and Saddow, S.E.: Advanced in silicon carbide processing and applications, edited by S.E. Saddow and A. Agarwal. (Artech House, Inc. , Norwood, MA, 2004); p. 8.Google Scholar
Choyke, W.J. and Pensl, G.: Physical properties of SiC. MRS Bull. 22, 25 (1997).CrossRefGoogle Scholar
Pensl, G., Bassler, M., Ciobanu, F., Afanas’ev, V.V., Yano, H., Kimoto, T., and Matsunami, H.: Traps at the SiC/SiO2-interface. in Silicon Carbide—Materials, Processing and Devices, edited by Agarwal, A., Skowronski, M., Cooper, J.A. Jr., and Janzén, E. (Mater. Res. Soc. Symp. Proc. 640, Warrendale, PA, 2001): p. H3.2.Google Scholar
Polychroniadis, E.K., Andreadou, A., and Mantzari, A.: Some recent progress in 3C-SiC growth a TEM characterization. J. Optoelectron. Adv. Mater. 6, 47 (2004).Google Scholar
Selvakumar, J. and Sathiyamoorthy, D.: Nanocrystalline silicon carbide thin films by fluidised/packed bed chemical vapor deposition using a halogen-free single source. J. Mater. Chem. 22, 7551 (2012).Google Scholar
Petti, D.A., Buongiorno, J., Maki, J.T., Hobbins, R.R., and Miller, G.K.: Key differences in the fabrication, irradiation and high temperature accident testing of US and German TRISO-coated particle fuel, and their implications on fuel performance. Nucl. Eng. Des. 222, 281 (2003).Google Scholar
Yan, X.T. and Xu, Y.: Chemical Vapor Deposition: An Integrated Engineering Design for Advance Materials (Springer-Verlag, London, 2010).Google Scholar
Charollais, F., Fonquernie, S., Perrais, C., Perez, M., Dugne, O., Cellier, F., Harbonnier, G., and Vitali, M.P.: CEA and AREVA R&D on HTR fuel fabrication and presentation of the CAPRI experimental manufacturing line. Nucl. Eng. Des. 236, 534 (2006).Google Scholar
López-Honorato, E., Meadows, P.J., Tan, J., and Xiao, P.: Control of stoichiometry, microstructure, and mechanical properties in SiC coatings produced by fluidized bed chemical vapor deposition. J. Mater. Res. 23, 1785 (2008).CrossRefGoogle Scholar
López-Honorato, E., Boshoven, J., Meadows, P.J., Manara, D., Guillermier, P., Juhe, S., Xiao, P., and Somers, J.: Characterisation of the anisotropy of pyrolytic carbon coatings and the graphite matrix in fuel compacts by two modulator generalized ellipsometry and selected area electron diffraction. Carbon 50, 680 (2012).CrossRefGoogle Scholar
Slusarenko, E.M.: Phase transitions and formation of polytypes in crystal structures of ionic compounds. Chem. Met. Alloys 1, 235 (2008).Google Scholar
Weltner, W. Jr.: On polytypism and internal rotation. J. Chem. Phys. 51, 2469 (1969).Google Scholar
Griffiths, L.B.: Defect structure and polytypism in silicon carbide. J. Phys. Chem. Solids 27, 257 (1966).Google Scholar
Krishna, P., Marshall, R., and Ryan, C.E.: The discovery of a 2H-3C solid-state transformation in silicon carbide single crystals. J. Cryst. Growth 8, 129 (1971).Google Scholar
Jepps, N.W. and Page, T.F.: Intermediate transformation structures in silicon carbide. J. Micro. 119, 177 (1980).Google Scholar
Xu, S.J., Zhou, J.G., Yang, B., and Zhang, B.Z.: Effect of deposition temperature on the properties of pyrolytic SiC. J. Nucl. Mater. 224, 12 (1995).Google Scholar
Chollon, G. and Naslain, R.: Chemical and thermo-mechanical properties of SiC-based reinforcements. Ceram. Eng. Sci. Proc. 21(4), 339 (2000).Google Scholar
Chollon, G., Vallerot, J.M., Helary, D., and Jouannigot, S.: Structural and textural changes of CVD-SiC to indentation, high temperature creep and irradiation. J. Eur. Ceram. Soc. 27, 1503 (2007).Google Scholar
Habuka, H., Ohmori, H., and Ando, Y.: Silicon carbide film deposition at low temperatures using monomethylsilane gas. Surf. Coat. Technol. 204, 1432 (2010).CrossRefGoogle Scholar
Habuka, H., Ando, Y., and Tsuji, M.: Room temperature process for chemical vapor deposition of amorphous silicon carbide thin film using monomethylsilane gas. Surf. Coat. Technol. 206, 1503 (2011).CrossRefGoogle Scholar
Saito, E., Filimonov, S.N., and Suemitsu, M.: Growth rate anomaly in ultralow-pressure chemical vapor deposition of 3C-SiC on Si(001) using monomethylsilane. Jpn. J. Appl. Phys. 50, 010203 (2011).Google Scholar
Habuka, H. and Ando, Y.: Mechanism of silicon carbide film deposition at room temperature using monomethylsilane gas. J. Electrochem. Soc. 158, H352 (2011).Google Scholar
Chiu, H.T. and Hsu, J.S.: Low-pressure chemical vapor deposition of silicon carbide thin films from hexamethyldisilane. Thin Solid Films 252, 13 (1994).Google Scholar
Miyajima, S., Yashiki, Y., Yamada, A., and Konagai, M.: Properties of nanocrystalline SiC: Ge:H alloy deposited by hot-wire chemical vapor deposition using Organosilane and Organogermane. Thin Solid Films 516, 670 (2008).CrossRefGoogle Scholar
Delplancke, M.P., Powers, J.M., Vandentop, G.J., Salmeron, M., and Somorjai, G.A.: Preparation and characterization of amorphous SiC: H thin films. J. Vac. Sci. Technol., A 9, 450 (1991).Google Scholar
Golecki, I., Reidinger, F., and Marti, J.: Single-crystalline, epitaxial cubic SiC films grown on (100) Si at 750 °C by chemical vapor deposition. Appl. Phys. Lett. 60, 1703 (1992).Google Scholar
Habuka, H., Watanabe, M., Miura, Y., Nishida, M., and Sekiguchi, T.: Polycrystalline silicon carbide film deposition using monomethylsilane and hydrogen chloride gases. J. Cryst. Growth 300, 374 (2007).Google Scholar
Kaneko, T., Miyakawa, N., Yamazaki, H., and Iikawa, Y.: Growth kinetics in plasma CVD of a-SiC films from monomethylsilane revealed by in situ spectroscopy. J. Cryst. Growth 237239, 1260 (2002).Google Scholar
Kaneko, T., Hosokawa, Y., Suga, T., and Miyakawa, N.: Low-temperature growth of polycrystalline SiC by catalytic CVD from monomethylsilane. Microelectron. Eng. 83, 41 (2006).Google Scholar
Morikawa, Y., Hirai, M., Ohi, A., Kusaka, M., and Iwami, M.: Heteroepitaxial growth of 3C–SiC film on Si(100) substrate by plasma chemical vapor deposition using monomethylsilane. J. Mater. Res. 22, 1275 (2007).Google Scholar
Hatayama, T., Yano, H., Uraoka, Y., and Fuyuki, T.: High purity SiC epitaxial growth by chemical vapor deposition using CH3SiH3 and C3H8 sources. Mater. Sci. Forum 527529, 203 (2006).Google Scholar
Hiroaki, K., Hiromasa, O., Ryota, N., Masatoshi, A., and Kiyoshi, Y.: Structural characterization of polycrystalline 3C-SiC films prepared at high rates by atmospheric pressure plasma chemical vapor deposition using monomethylsilane. Jpn. J. Appl. Phys. 45, 8381 (2006).Google Scholar
Miyajima, S., Yamada, A., and Konagai, M.: Low temperature (320 °C) deposition of hydrogenated microcrystalline cubic silicon carbide thin films. Mater. Sci. Forum 457460, 317 (2003).Google Scholar
Chen, T., Huang, Y., Yang, D., Carius, R., and Finger, F.. Development of microcrystalline silicon carbide window layers by hot-wires CVD and their applications in microcrystalline silicon thin film solar cells. Thin Solid Films 519, 4523 (2011).Google Scholar
Hiroaki, K., Hiromasa, O., and Kiyoshi, Y.: Study on the growth of heteroepitaxial cubic silicon carbide layers in atmospheric-pressure H2-based plasma. J. Nanosci. Nanotech. 11, 2903 (2011).Google Scholar
Kohler, F., Chen, T., Nuys, M., Heidt, A., Luysberg, M., Finger, F., and Cariusa, R.: Microstructure of hydrogenated silicon carbide thin films prepared by chemical vapour deposition techniques. J. Non-Cryst. Solids (2012, in press).Google Scholar
Yasui, K., Asada, K., and Akahane, T.: Epitaxial growth of 3C-SiC films on Si substrates by triode plasma CVD using dimethylsilane. Appl. Surf. Sci. 159160, 556 (2000).Google Scholar
Hashim, A.M. and Yasui, K.: Low Temperature Heteroepitaxial Growth of 3C-SiC on Si Substrates by Rapid Thermal Triode Plasma CVD Using Dimethylsilane (IEEE International Conference on Semiconductor Electronics, Kuala Lumpur, Malaysia, 2006); p. 646.Google Scholar
Narita, Y., Harashima, M., Yasui, K., Akahane, T., and Takata, M.: Interpretation of initial stage of 3C-SiC growth on Si(1 0 0) using dimethylsilane. Appl. Surf. Sci. 252, 3460 (2006).Google Scholar
Jensen, C.J. and Chiu, W.K.S.: Open-air laser-induced chemical vapor deposition of silicon carbide coatings. Surf. Coat. Technol. 201, 2822 (2006).Google Scholar
Alptekin, E. and Ozturk, M.C.. Ultrahigh vacuum chemical vapor deposition of doped and intrinsic Si1−xCx epitaxy from disilane, trimethylsilane, and phosphine. J. Electrochem. Soc. 157, H699H704 (2010).CrossRefGoogle Scholar
Chen, S-W., Wang, Y-S., Hu, S-Y., Lee, W-H., Chi, C-C., and Wang, Y-L.: A study of trimethylsilane (3MS) and tetramethylsilane (4MS) based á-SiCN: H/á-SiCO: H diffusion barrier films. Materials 5, 377 (2012).Google Scholar
Chiang, C-C., Chen, M-C., Ko, C-C., Wu, Z-C., Jang, S-M., and Liang, M-S.: Physical and barrier properties of plasma-enhanced chemical vapor deposited á-SiC: H films from trimethylsilane and tetramethylsilane. Jpn. J. Appl. Phys. 42, 4273 (2003).Google Scholar
Madapura, S., Steckl, A.J., and Loboda, M.: Heteroepitaxial growth of SiC (100) and (111) by CVD using trimethylsilane. J. Electrochem. Soc. 146, 1197 (1999).Google Scholar
Herlin, N., Lefebvre, M., Pealat, M., and Perrin, J.: Investigation of the chemical vapor deposition of silicon carbide from tetramethylsilane by in situ temperature and gas composition measurements. J. Phys. Chem. 96, 7063 (1992).Google Scholar
Nahm, K.S., Kim, K.C., Park, C.I., Lim, K.Y., Yang, Y.S., and Seo, Y.H.: Growth chemistry and interface characterization of single crystal SiC on modified Si surface. J. Chem. Eng. Jpn. 34, 692 (2001).Google Scholar
Figueras, A., Garelik, S., Santiso, J., and Rodriguez-Clemente, R.: Growth and properties of CVD-SiC layers using tetramethylsilane. Mater. Sci. Eng. B 11, 83 (1992).Google Scholar
Seo, Y.H., Nahm, K.S., Suh, E-K., Lee, H.J., and Hwang, Y.G.: Growth mechanism of 3C–SiC(111) films on Si using tetramethylsilane by rapid thermal chemical vapor deposition. J. Vac. Sci. Technol., A 15, 2226 (1997).Google Scholar
Rajagopalan, T., Wang, X., Lahlouh, B., Ramkumar, C., Dutta, P., and Gangopadhyay, S.: Low temperature deposition of nanocrystalline silicon carbide films by plasma enhanced chemical vapor deposition and their structural and optical characterization. J. Appl. Phys. 94, 5252 (2003).Google Scholar
Hyun, J.S., Park, J.H., Moon, J.S., Park, J.H., Kim, S.H., Choi, Y.J., Lee, N.E., and Boo, J.H.: Study on the applications of SiC thin films to MEMS techniques through a fabrication process of cantilevers. Prog. Solid State Chem. 33, 309 (2005).Google Scholar
Hyun, J-S., Nam, S-H., Kang, B-C., and Boo, J-H.: Growth of 3C-SiC nanowires on nickel coated Si(100) substrate using dichloromethylvinylsilane and diethylmethylsilane by MOCVD method. Phys. Status Solidi C 6, 810 (2009).Google Scholar
Jeong, S.H., Lim, D.C., Jee, H-G., Moon, O.M., Jung, C-K., Moon, J.S., Kim, S.K., Lee, S-B., and Boo, J-H.: Deposition of silicon carbide films using a high vacuum metalorganic chemical vapor deposition method with a single source precursor: Study of their structural properties. J. Vac. Sci. Technol., B 22, 2216 (2004).Google Scholar
Kang, B.-C., Moon, O.-M., and Boo, J.-H.: A comparative study on SiC thin films grown on both uncatalyzed and Ni catalyzed Si(100) substrates by thermal MOCVD using single molecular precursors. Thin Solid Films 501, 185 (2006).Google Scholar
Tang, X., Haubner, R., Lux, B., Zechmann, A., and Hengge, E.: Preparation of â-SiC coatings using 1,2-dimethyldisilane as precursor. J. De Physique IV 5, 777 (1995).Google Scholar
Chung, G.S. and Jeong, J.: Raman characteristics of poly 3C-SiC thin films deposited on AlN buffer layer. Mater. Sci. Forum 600603, 505 (2009).Google Scholar
Sartel, C., Souliere, V., Dazord, J., Monteil, Y., El-Harrouni, I., Bluet, J.M., and Guillot, G.: Epitaxial growth of 4H-SiC with hexamethyldisilane HMDS. Mater. Sci. Forum 389393, 263 (2002).Google Scholar
Sartel, C., Balloud, C., Souliere, V., Juillaguet, S., Dazord, J., Monteil, Y., Camassel, J., and Rushworth, S.: Comparative studies of <0001> 4H-SiC layers grown with either silane or hexamethyldisilane/propane precursor systems. Mater. Sci. Forum 457460, 217 (2004).Google Scholar
Chung, G.S. and Kim, KS.: Heteroepitaxial growth of single 3C-SiC thin films on Si (100) substrates using a single-source precursor of hexamethyldisilane by APCVD. Bull. Korean Chem. Soc. 28, 533 (2007).Google Scholar
Nordell, N., Nishino, S., Yang, J-W., Jacob, C., and Pirouz, P.: Growth of SiC using hexamethyldisilane in a hydrogen‐poor ambient. Appl. Phys. Lett. 64, 1647 (1994).Google Scholar
Teker, K. and Oxenham, J.A.: Growth of ultra-high density 3C-SiC nanowires via single source CVD, in Semiconductor Nanowires—From Fundamentals to Applications, edited by Schmidt, V., Lauhon, L.J., Fukui, T., Wang, G.T., and Björk, M. (Mater. Res. Soc. Symp. Proc. 1350, Warrendale, PA, 2011).Google Scholar
Gupta, A. and Jacob, C.: A simple method to synthesize nano-sized 3C-SiC powder using hexamethyldisilane in a CVD reactor. Mater. Sci. Forum 527529, 767 (2006).Google Scholar
Teker, K., Jacob, C., Chung, J., and Hong, M.H.: Epitaxial growth of 3C-SiC on Si(001) using hexamethyldisilane and comparison with growth on Si(111). Thin Solid Films 371, 53 (2000).Google Scholar
Teker, K.: Selective epitaxial growth of 3C-SiC on patterned Si using hexamethyldisilane by APCVD. J. Cryst. Growth 257, 245 (2003).Google Scholar
Boo, J.H., Yu, K.S., and Kim, Y.: Growth of cubic SiC films using 1,3-disilabutane. Chem. Mater. 7, 694 (1995).Google Scholar
Yu, K.S., Lee, J.W., Sung, M.M., Lee, S.B., and Kim, Y.: Surface analysis of cubic SiC thin films prepared by high vacuum chemical vapor deposition using 1,3-disilabutane. J. Surf. Anal. 5, 308 (1999).Google Scholar
Stoldt, C.R., Carraro, C., Ashurst, W.R., Gao, D., Howe, R.T., and Maboudian, R.: A low-temperature CVD process for silicon carbide MEMS. Sens. Actuators, A 9798, 410 (2002).Google Scholar
Selvakumar, J., Sathiyamoorthy, D., and Nagaraja, K.S.: Role of vapor pressure of 1,4-bis(trimethylsilyl)benzene in developing silicon carbide thin film using a plasma-assisted liquid injection chemical vapor deposition process. Surf. Coat. Technol. 205, 3493 (2011).Google Scholar
Steckl, A.J., Yuan, C., Li, J.P., and Loboda, M.J.: Growth of crystalline 3C-SiC on Si at reduced temperatures by chemical vapor deposition from silacyclobutane. Appl. Phys. Lett. 63, 3347 (1993).Google Scholar
Chiu, H.T. and Lee, S.F.: Deposition of silicon carbide thin films from 1,1-dimethyl-1-silacyclobutane. J. Chin. Chem. Soc. 39, 293 (1992).Google Scholar
Awad, Y., El Khakani, M.A., Aktik, C., Mouine, J., Camire, N., Lessard, M., and Scarlete, M.: Thermally induced interfacial interactions between various metal substrates and a-SiC thin films deposited by a polymer-source chemical vapor deposition. Mater. Chem. Phys. 104, 350 (2007).CrossRefGoogle Scholar
Avigal, Y., Schieber, M., and Levin, R.: The growth of hetero-epitaxial SiC films by pyrolysis of various alkyl-silicon compounds. J. Cryst. Growth 2425, 188 (1974).Google Scholar
Boo, J.H., Yu, K.S., Lee, M., and Kim, Y.: Deposition of cubic SiC films on silicon using dimethylisopropylsilane. Appl. Phys. Lett. 66, 3486 (1995).Google Scholar
Wrobel, A.M., Walkiewicz-Pietrzykowska, A., Uznanski, P., and Glebocki, B.: Amorphous hydrogenated silicon carbide (a-SiC: H) coatings produced by remote hydrogen microwave plasma CVD from bis(dimethylsilyl)ethane–A novel single-source precursor. Chem. Vap. Deposition 17, 186 (2011).Google Scholar
Jeong, J.K., Na, H.J., Choi, J., Hwang, C.S., Kim, H.J., and Bahng, W.: Homoepitaxial growth of 6H-SiC thin films by metal-organic chemical vapor deposition using bis-trimethylsilylmethane precursor. J. Cryst. Growth 210, 629 (2000).Google Scholar
Chiu, H.T. and Wu, P.F.: Low-pressure chemical vapor deposition of silicon carbide thin films from organopolysilanes. J. Chin. Chem. Soc. 38, 231 (1991).Google Scholar
Goela, J.S., Burns, L.E., and Taylor, R.L.: Transparent chemical vapor deposited β‐SiC. Appl. Phys. Lett. 64, 131 (1994).Google Scholar
Price, R.J.: Properties of silicon carbide for nuclear fuel particle coatings. Nucl. Technol. 35, 320 (1977).Google Scholar
Price, R.J.: Structure and properties of pyrolytic silicon carbide. J. Am. Ceram. Soc. Bull. 48, 859 (1969).Google Scholar
Shen, T.D., Feng, S., Tang, M., Valdez, A.J., Wang, Y., and Sickafus, K.E.: Enhanced radiation tolerance in nanocrystalline MgGa2O4. Appl. Phys. Lett. 90, 263115 (2007).Google Scholar
Zhang, J., Lian, J., Fuentes, A.F., Zhang, F., Lang, M., Lu, F., and Ewing, R.C.: Enhanced radiation resistance of nanocrystalline pyrochlore Gd2(Ti0.65Zr0.35)2O7. Appl. Phys. Lett. 94, 3155855 (2009).Google Scholar
Swaminathan, N., Kamenski, P.J., and Morgan, D.: Effects of grain size and grain boundaries on defect production in nanocrystalline 3C–SiC. Acta Mater. 58, 2843 (2010).Google Scholar
Jiang, W., Wang, H., Kim, I., Bae, I-T., Li, G., Nachimuthu, P., Zhu, Z., Zhang, Y., and Weber, W.J.: Response of nanocrystalline 3C silicon carbide to heavy-ion irradiation. Phys. Rev. B 80, 161301 (2009).Google Scholar
Price, R.J.: Thermal conductivity of neutron-irradiated pyrolytic â-silicon carbide. J. Nucl. Mater. 46, 268 (1973).Google Scholar
van Rooyen, I.J., Neethling, J.H., Henry, A., and Janzen, E.: The Influence of Phosphorous and High Temperature Annealing on the Nanostructures of 3C-SiC (Fifth International Topical Meeting on High Temperature Reactor Technology, Prague, Czech Republic, 2010); p. 1.Google Scholar
Descotes, V.and Ortensi, J.: Final report on utilization of TRU TRISO fuel as applied to HTR systems. Part II: Prismatic reactor cross section generation (Idaho National Laboratory, Fuel Cycle Research and Development, Idaho Falls, ID, DE-AC07–05ID14517).Google Scholar
International Atomic Energy Agency: Neutron Transmutation Doping of Silicon at Research Reactors (IAEA-TECDOC-1681, IAEA, Vienna, Austria, 2012); p. 3.Google Scholar
Advanced SiC/SiC ceramic composites: Developments and applications in energy systems, edited by Kohyama, A., Singh, M., Lin, H.T., and Katoh, Y., Ceramics Transactions (Proc. CREST Inter. Symp. On SiC/SiC composites, American ceramic Society, Vol. 144, Westerville, OH, 2002).Google Scholar
Abdou, M., Sze, D-K., Wong, C., Sawan, M., Ying, A., Morley, N.B., and Malang, S.: U.S. plans and strategy for ITER blanket testing. Fusion Sci. Technol. 47, 475 (2005).Google Scholar
Hayner, G.O., Shaber, E.L., Mizia, R.E., Bratton, R.L., Sowder, W.K., Wright, R.N., Windes, W.E., Totemeier, T.C., Moore, K.A., Corwin, W.R., Burchell, T.D., Corum, J.M., Klett, J.W., Nanstad, R.K., Snead, L.L., Rittenhouse, P.L., Swindeman, R.W., Wilson, D.F., McGreevy, T.E., Jones, R.H., and Gardner, F.: Next Generation Nuclear Plant Materials Research and Development Program Plan (Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID, DE-AC07-99ID13727, 2004).Google Scholar
Kohyama, A.: The present status of SiC/SiC R&D for nuclear application in Japan. Mat. Sci. Eng. 18, 162002 (2011).Google Scholar
Park, J.S., Jung, H.C., Ooi, Y., Kishimoto, K., and Kohyama, A.: Fabrication of environmentally resistant NITE-SiC/SiC composites. Mat. Sci. Eng. 18, 202012 (2011).Google Scholar
Udayakumar, A., Balasubramanian, M., Gopala, H.B., Sampathkumaran, P., Seetharamu, S., Babu, R., Sathiyamoorthy, D., and Reddy, G.R.: Influence of the type of interface on the tribological characteristics of ICVI generated SiCf/SiC composites. Wear 271, 859 (2011).CrossRefGoogle Scholar
Nozaki, Y., Kitazoe, M., Horii, K., Umemoto, H., Masuda, A., and Matsumura, H.: Identification and gas phase kinetics of radical species in Cat-CVD processes of SiH4. Thin Solid Films 395, 47 (2001).Google Scholar
Lee, Y.J., Choi, D.J., Kim, S.S., Lee, H.L., and Kim, H.D.: Comparison of diluent gas effect on the growth behavior of horizontal CVD SiC with analytical and experimental data. Surf. Coat. Technol. 177178, 415 (2004).Google Scholar
Ge, Y.B., Gordon, M.S., Battaglia, F., and Fox, R.O.: Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase. 1. Thermodynamics. J. Phys. Chem. A 111, 1462 (2007).Google Scholar
Ge, Y.B., Gordon, M.S., Battaglia, F., and Fox, R.O.: Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase. 2. Reaction paths and transition states. J. Phys. Chem. A 111, 1475 (2007).Google Scholar
Ge, Y.B., Gordon, M.S., Battaglia, F., and Fox, R.O.: Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase. 3. Reaction rate constant calculations. J. Phys. Chem. A 114, 2384 (2010).Google Scholar
Allendorf, M.D. and Melius, C.F.: Theoretical study of the thermochemistry of molecules in the silicon-carbon-hydrogen system. J. Phys. Chem. 96, 428 (1992).Google Scholar
Allendorf, M.D. and Melius, C.F.: Theoretical study of thermochemistry of molecules in the silicon-carbon-chlorine-hydrogen system. J. Phys. Chem. 97, 720 (1993).Google Scholar
Becerra, R. and Walsh, R.: Thermochemistry. in The Chemistry of Organic Silicon Compounds (John Wiley & Sons, Vol. 2, New York, 1998); pp. 153180.Google Scholar
Selvakumar, J., Raghunathan, V.S., and Nagaraja, K.S.: Vapor pressure measurements of Sc(tmhd)3 and synthesis of stabilized zirconia thin films by hybrid CVD technique using Sc(tmhd)3, Zr(tmhd)4, and Al(acac)3 [tmhd, 2,2,6,6-tetramethyl-3,5-heptanedione; acac, 2,4-pentanedione] as precursors. J. Phys. Chem. C 113, 19011 (2009).Google Scholar
Selvakumar, J., Raghunathan, V.S., and Nagaraja, K.S.: Tris(2,4-pentanedionato)scandium(III) as a precursor for plasma-assisted liquid injection CVD to deposit nanocrystalline scandia thin films. Chem. Vap. Deposition 15, 262 (2009).Google Scholar