Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T10:57:45.521Z Has data issue: false hasContentIssue false

Properties of epitaxial graphene grown on C-face SiC compared to Si-face

Published online by Cambridge University Press:  23 September 2013

Leif I. Johansson*
Affiliation:
Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping, Sweden
Chariya Virojanadara*
Affiliation:
Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping, Sweden
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Epitaxial graphene of uniform thickness prepared on SiC is of great interest for various applications. On the Si-face, large area uniformity has been achieved, and there is a general consensus about the graphene properties. A similar uniformity has yet not been demonstrated on the C-face where the graphene has been claimed to be fundamentally different. A rotational disorder between adjacent graphene layers has been reported and suggested to explain why multilayer C-face graphene show the π-band characteristic of monolayer graphene. Utilizing low energy electron microscopy, x-ray photoelectron electron microscopy, low energy electron diffraction, and photoelectron spectroscopy, we investigated the properties of C-face graphene prepared by sublimation growth. We observe the formation of micrometer-sized crystallographic grains of multilayer graphene and no rotational disorder between adjacent layers within a grain. Adjacent grains are in general found to have different azimuthal orientations. Effects on C-face graphene by hydrogen treatment and Na exposure were also investigated and are reported. Why multilayer C-face graphene exhibits single layer electronic properties is still a puzzle, however.

Type
Invited Papers
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lu, W., Soukiassian, P., and Boeckl, J.: Graphene, fundamentals and functionalities. MRS Bull. 37(12), 11191321 (2012).Google Scholar
First, P.N., de Heer, W.A., Seyller, T., Berger, C., Stroscio, J.A., and Moon, J.S.: Epitaxial graphenes on silicon carbide. MRS Bull. 35(4), 296 (2010).CrossRefGoogle Scholar
Ruan, M., Hu, Y., Guo, Z., Dong, R., Palmer, J., Hankins, J., Berer, C., and de Heer, W.A.: Epitaxial graphene on silicon carbide: Introduction to structured graphene. MRS Bull. 37(12), 1138 (2012).Google Scholar
Nyakiti, L.O., Wheeler, V.D., Garces, N.Y., Myers-Ward, R.L., Eddy, C.R. Jr., and Gaskill, D.K.: Enabling graphene-based technologies: Toward wafer-scale production of epitaxial graphene. MRS Bull. 37(12), 1149 (2012).CrossRefGoogle Scholar
Virojanadara, C., Syväjarvi, M., Yakimova, R., Johansson, L.I., Zakharov, A.A., and Balasubramanian, T.: Homogeneous large-area graphene layer growth on 6H-SiC(0001). Phys. Rev. B 78, 245403 (2008).Google Scholar
Emtsev, K.V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G.L., Ley, L., McChesney, J.L., Ohta, T., Reshanov, S.A., Röhrl, J., Rotenberg, E., Schmid, A.K., Waldmann, D., Weber, H.B., and Seyller, T.: Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 8, 203 (2009).Google Scholar
Virojanadara, C., Yakimova, R., Osiecki, J.R., Syväjärvi, M., Uhrberg, R.I.G., Johansson, L.I., and Zakharov, A.A.: Substrate orientation: A way towards higher quality monolayer graphene growth on 6H-SiC(0001). Surf. Sci. 603, L87 (2009).Google Scholar
Starke, U., Forti, S., Emtsev, K.V., and Coletti, C.: Engineering the electronic structure of epitaxial graphene by transfer doping and atomic intercalation. MRS Bull. 37(12), 1177 (2012).Google Scholar
Luxmi, , Srivastava, N., He, G., Feenstra, R.M., and Fisher, P.J.: Comparison of graphene formation on C-face and Si-face SiC{0001} surfaces. Phys. Rev. B 82, 235406 (2010).Google Scholar
Mathieu, C., Barrett, N., Rault, J., Mi, Y.Y., Zhang, B., de Heer, W.A., Berger, C., Conrad, E.H., and Renault, O.: Microscopic correlation between chemical and electronic states in epitaxial graphene on SiC(000-1). Phys. Rev. B 83, 235436 (2011).Google Scholar
Johansson, L.I., Watcharinyanon, S., Zakharov, A.A., Iakimov, T., Yakimova, R., and Virojanadara, C.: The stacking of adjacent graphene layers grown on C-face SiC. Phys. Rev. B. 84, 125405 (2011).CrossRefGoogle Scholar
Srivastava, N., He, G., Luxmi, , Mende, P.C., Feenstra, R.M., and Sun, Y.: Graphene formed on SiC under various environments: Comparison of Si-face and C-face. J. Phys. D: Appl. Phys. 45, 154001 (2012).Google Scholar
Hicks, J., Shepperd, K., Wang, F., and Conrad, E.H.: The structure of graphene grown on the SiC(000-1) surface. J. Phys. D: Appl. Phys. 45, 154002 (2012).Google Scholar
Johansson, L.I., Xia, C., Ul Hassan, J., Iakimov, T., Zakharov, A.A., Watchari-nyanon, S., Yakimova, R., Janzen, E., and Virojanadara, C.: Is the registry between adjacent graphene layers grown on C-face SiC different compared to that on Si-face SiC. Crystals 3, 1 (2013).Google Scholar
Forbeaux, I., Themlin, J-M., Charrier, A., Thibaudau, F., and Debever, J-M.: Solid state graphitization mechanisms of silicon carbide 6H-SiC polar faces. Appl. Surf. Sci. 162163, 406 (2000).Google Scholar
Hass, J., Feng, R., Millan-Otoya, J.E., Li, X., Sprinkle, M., First, P.N., de Heer, W.A., Conrad, E.H., and Berger, C.: Structural properties of the multilayer graphene/4H-SiC(000-1) system as determined by surface x-ray diffraction. Phys. Rev. B 75, 214109 (2007).Google Scholar
Hass, J., Varchon, F., Millan-Otoya, J.E., Sprinkle, M., Sharma, N., de Heer, W.A., Berger, C., First, P.N., Magaud, L., and Conrad, E.H.: Why multilayer graphene on 4H-SiC(000-1) behaves like a single sheet of graphene. Phys. Rev. Lett. 100, 125504 (2008).Google Scholar
Hass, J., de Heer, W.A., and Conrad, J.: The growth and morphology of epitaxial multilayer graphene. J. Phys. Condens. Matter 20, 323202 (2008).Google Scholar
Emtsev, K.V., Speck, F., Seyller, T., Ley, L., and Riley, J.D.: Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study. Phys. Rev. B 77, 155303 (2008).Google Scholar
Sprinkle, M., Siegel, D., Hu, Y., Hicks, J., Tejeda, A., Taleb-Ibrahimi, A., Le Fèvre, P., Bertran, F., Vizzini, S., Enriquez, H., Chiang, S., Soukiassian, P., Berger, C., de Heer, W.A., Lanzara, A., and Conrad, E.H.: First direct observation of a nearly ideal graphene band structure. Phys. Rev. Lett. 103, 226803 (2009).Google Scholar
Miller, D.L., Kubista, K.D., Rutter, G.M., Ruan, M., de Heer, W.A., First, P.N., and Stroscio, J.A.: Structural analysis of multilayer graphene via atomic moire interferometry. Phys. Rev. B 81, 125427 (2010).Google Scholar
Ohta, T., Bostwick, A., McChesney, J.L., Seyller, T., Horn, K., and Rotenberg, E.: Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 98, 206802 (2007).Google Scholar
Riedl, C., Coletti, C., Iwasaki, T., Zakharov, A.A., and Starke, U.: Quasi-free standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 103, 246804 (2009).CrossRefGoogle ScholarPubMed
Virojanadara, C., Zakharov, A.A., Yakimova, R., and Johansson, L.I.: Buffer layer free large area bi-layer graphene on SiC(0001). Surf. Sci. 604, L4 (2010).Google Scholar
Watcharinyanon, S., Virojanadara, C., Osiecki, J.R., Zakharov, A.A., Yakimova, R., Uhrberg, R.I.G., and Johansson, L.I.: Hydrogen intercalation of graphene grown on 6H-SiC(0001). Surf. Sci. 605, 1662 (2011).Google Scholar
Watcharinyanon, S., Johansson, L.I., Xia, C., and Virojanadara, C.: Changes in structural and electronic properties of graphene grown on 6H-SiC(0001) by Na. J. Appl. Phys. 111, 083711 (2012).Google Scholar
Sandin, A., Jayasekera, T., Rowe, J.E., Kim, K.W., Nardelli, M.B., and Dougherty, D.B.: Multiple coexisting intercalation structures of sodium in epitaxial graphene-SiC interfaces. Phys. Rev. B 85, 125410 (2012).CrossRefGoogle Scholar
Xia, C., Watcharinyanon, S., Zakharov, A.A., Johansson, L.I., Yakimova, R., and Virojanadara, C.: Detailed studies of Na intercalation on furnace grown graphene on 6H-SiC(0001). Surf. Sci. 613, 88 (2013).Google Scholar
Bostwick, A., Speck, F., Seyller, T., Horn, K., Polini, M., Asgari, R., MacDonald, A.H., and Rotenberg, E.: Observation of plasmarons in quasi-freestanding graphene. Science 328, 999 (2010).Google Scholar
Virojanadara, C., Watcharinyanon, S., Zakharov, A.A., and Johansson, L.I.: Epitaxial graphene on 6H-SiC(0001) and Li intercalation. Phys. Rev. B 82, 205402 (2010).CrossRefGoogle Scholar
Virojanadara, C., Zakharov, A.A., Watcharinyanon, S., Yakimova, R., and Johansson, L.I.: A LEEM and XPEEM study of Li intercalated into graphene on SiC(0001). New J. Phys. 12, 125015 (2010).Google Scholar
Walter, A.L., Bostwick, A., Jeon, K-J., Speck, F., Ostler, M., Seyller, T., Moreschini, L., Chang, Y.J., Polini, M., Asgari, R., MacDonald, A.H., Horn, K., and Rotenberg, E.: Effective screening and plasmaron bands in graphene. Phys. Rev. B 84, 085410 (2011).Google Scholar
Watcharinyanon, S., Virojanadara, C., and Johansson, L.I.: Rb and Cs deposition on epitaxial graphene grown on 6H-SiC(0001). Surf. Sci. 605, 1918 (2011).Google Scholar
Siegel, D.A., Hwang, C.G., Fedorov, A.W., and Lanzara, A.: Quasifreestanding multilayer graphene films on the carbon face of SiC. Phys. Rev. B 81, 241417 (2010).Google Scholar
Johansson, L.I., Xia, C., and Virojanadara, C.: Na induced changes in the electronic band structure of graphene grown on C-face SiC. Graphene 2, 1 (2013).Google Scholar
Zakharov, A.A., Virojanadara, C., Watcharinyanon, S., Yakimova, R., and Johansson, L.I.: Nano-scale 3D(E, kx, ky) band structure imaging on graphene and intercalated graphene. IBM J. Res. Dev. 55(4), 6 (2011).Google Scholar
Hibino, H., Kagashima, K., Maeda, F., Nagase, M., Kobayashi, Y., and Yamaguchi, H.: Microscopic thickness determination of thin graphite films formed on SiC from quantized oscillation in reflectivity of low-energy electrons. Phys. Rev. B 77, 075413 (2008).Google Scholar
Johansson, L.I., Owman, F., and Mårtensson, P.: High-resolution core level study of 6H-SiC(0001). Phys. Rev. B 53, 13793 (1996).Google Scholar
Latil, S., Meunier, V., and Henrard, L.: Massless fermions in multilayer graphitic systems with misoriented layers: Ab initio calculations and experimental fingerprints. Phys. Rev. B 76, 201402 (2007).Google Scholar
Latil, S. and Henrard, L.: Charge carriers in few-layer graphene films. Phys. Rev. Lett. 97, 036803 (2006).Google Scholar
Ohta, T., Beechem, T.E., Robinson, J.T., and Kellogg, G.L.: Long-range atomic ordering and variable interlayer interactions in two overlapping graphene lattices with stacking misorientations. Phys. Rev. B 85, 075415 (2012).Google Scholar
Ul Hassan, J., Virojanadara, C., Meyer, A., Ivanov, I.G., Flege, J.I., Watcharinyanon, S., Falta, J., Johansson, L.I., and Janzén, E.: Control of epitaxial graphene thickness on 4H-SiC(0001) and buffer layer removal through hydrogen intercalation. Mater. Sci. Forum 717720, 605 (2012).Google Scholar
Mucha-Kruczyński, M., Tsyplyatyev, O., Grishin, A., McCann, E., Fal’ko, V.I., Bostwick, A., and Rotenberg, E.: Characterization of graphene through anisotropy of constant-energy maps in angle-resolved photoemission. Phys. Rev. B 77, 195403 (2008).Google Scholar
Gierz, I., Henk, J., Hàchst, H., Ast, C.R., and Kern, K.: Illuminating the dark corridor in graphene: Polarization dependence of angle-resolved photoemission spectroscopy on graphene. Phys. Rev. B 83, 121408 (2011).Google Scholar
Avila, J., Razado, I., Lorcy, S., Lagarde, B., Giorgetta, J-L., Polack, F., and Asensio, M.C.: ANTARES, a scanning photoemission microscopy beamline at SOLEIL. J. Phys. Conf. Ser. 425, 192023 (2013).Google Scholar
Pankratov, O., Hensel, S., Gàtzfried, P., and Bockstedte, M.: Graphene on cubic and hexagonal SiC: A comparative theoretical study. Phys. Rev. B 86, 155432 (2012).Google Scholar