Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-04T18:02:31.020Z Has data issue: false hasContentIssue false

Propagation of shear bands in a Cu47.5Zr47.5Al5 bulk metallic glass

Published online by Cambridge University Press:  31 January 2011

K.B. Kim*
Affiliation:
Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, Gwangjin-gu, Seoul 143-747, Korea
J. Das
Affiliation:
Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Institute for Complex Materials, Dresden D-01171, Germany
M.H. Lee
Affiliation:
Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Institute for Complex Materials, Dresden D-01171, Germany
S. Yi
Affiliation:
Department of Materials Sciences and Metallurgy, Kyungpook National University, Buk-gu, Daegu 702-701, Korea
E. Fleury
Affiliation:
Advanced Metals Research Center, Korea Institute of Sciences and Technology, Cheongryang, Seoul 130-650, South Korea
Z.F. Zhang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
W.H. Wang
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
J. Eckert
Affiliation:
Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Institute for Complex Materials, Dresden D-01171, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We report a novel finding of slither propagation of shear bands on the fracture surface of a Cu47.5Zr47.5Al5 bulk metallic glass (BMG). The nanoscale heterogeneities in the as-cast state are aggregated along shear bands with irregular morphology. Such heterogeneities create a fluctuating stress field during shear band propagation leading to a slither propagation mode. The slither propagation of 10 to 15 nm wide shear bands is effective to improve both the plasticity and the “work-hardening-like” behavior of BMGs if the size, the morphology, and the elastic properties of the heterogeneities are intimately intercalated during solidification.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Spaepen, F.: Microscopic mechanism for steady-state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 1977Google Scholar
2Argon, A.S.: Plastic deformation in metallic glasses. Acta Metall. 27, 47 1979Google Scholar
3Greer, A.L.: Metallic glasses. Science 267, 1947 1995Google Scholar
4Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 1999CrossRefGoogle Scholar
5Xing, L.Q., Li, Y., Ramesh, K.T., Li, J.Hufnagel, T.C.: Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys. Rev. B 64, 180201 2001CrossRefGoogle Scholar
6Inoue, A., Zhang, W., Zhang, T.Kurosaka, K.: High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta Mater. 49, 2645 2001Google Scholar
7Schroers, J.Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 2004Google Scholar
8Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H.Eckert, J.: “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 2005CrossRefGoogle ScholarPubMed
9Xi, X.K., Zhao, D.Q., Pan, M.X., Wang, W.H., Wu, Y.Lewandowski, J.J.: Fracture of brittle metallic glasses: brittleness or plasticity. Phys. Rev. Lett. 94, 125510 2005CrossRefGoogle ScholarPubMed
10Kato, H., Inoue, A.Saida, J.: Influence of hydrostatic pressure during casting on as cast structure and mechanical properties in Zr65Al7.5Ni10Cu17.5−xPdx (x = 0, 17.5) alloys. Scripta Mater. 51, 1063 2004CrossRefGoogle Scholar
11Johnson, W.L.Samwer, K.: A universal criterion for plastic yielding of metallic glasses with a (T/T g)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 2005Google Scholar
12Kim, K.B., Das, J., Venkataraman, S., Yi, S.Eckert, J.: Work hardening ability of ductile Ti45Cu40Ni7.5Zr5Sn2.5 and Cu47.5Zr47.5Al5 bulk metallic glasses. Appl. Phys. Lett. 89, 071908 2006CrossRefGoogle Scholar
13Lewandowski, J.J., Wang, W.H.Greer, A.L.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 2005Google Scholar
14Saida, J., Setyawan, A.D., Kato, H.Inoue, A.: Nanoscale multistep shear band formation by deformation-induced nanocrystallization in Zr–Al–Ni–Pd bulk metallic glass. Appl. Phys. Lett. 87, 151907 2005CrossRefGoogle Scholar
15Inoue, A., Zhang, W., Tsurui, T., Yavari, A.R.Greer, A.L.: Unusual room-temperature compressive plasticity in nanocrystal-toughened bulk copper-zirconium glass. Philos. Mag. Lett. 85, 221 2005Google Scholar
16Cao, Q., Li, J., Zhou, Y.Jiang, J.Z.: Mechanically driven phase separation and corresponding microhardness change in Cu60Zr20Ti20 bulk metallic glass. Appl. Phys. Lett. 86, 081913 2005Google Scholar
17Kim, K.B., Das, J., Wang, X.D., Zhang, Z.F., Eckert, J.Yi, S.: Effect of Sn on microstructure and mechanical properties of (Ti-Cu)-based bulk metallic glasses. Philos. Mag. Lett. 86, 479 2006Google Scholar
18Kim, K.B., Das, J.Eckert, J.: unpublished worksGoogle Scholar
19Mueth, D.M., Debregeas, G.F., Karczmar, G.S., Eng, P.J., Nagel, S.R.Jaeger, H.M.: Signatures of granular microstructure in dense shear flows. Nature 406, 385 2000CrossRefGoogle ScholarPubMed
20Porte, G., Berret, J-F.Harden, J.L.: Inhomogeneous flows of complex fluids: Mechanical instability versus non-equilibrium phase transition. J. Phys. II France 7, 459 1997Google Scholar
21Tung, J., Gupta, R.K., Simon, G.P., Edward, G.H.Bhattacharya, S.N.: Rheological and mechanical comparative study of in situ polymerized and melt-blended nylon 6 nanocomposites. Polymer 46, 10405 2005CrossRefGoogle Scholar
22Papka, S.D.Kyriakides, S.: Biaxial crushing of honeycombs: Part 1. Exp. Int. J. Solids Struct. 36, 4367 1999CrossRefGoogle Scholar
23Li, J., Spaepen, F.Hufnagel, T.C.: Nano-scale defects in shear bands in a metallic glass. Philos. Mag. A 82, 2623 2002CrossRefGoogle Scholar
24Donovan, P.E.Stobbs, W.M.: The structure of shear bands in metallic glasses. Acta Metall. 29, 1419 1981CrossRefGoogle Scholar
25Argon, A.S.: Mechanisms of inelastic deformation in metallic glasses. J. Phys. Chem. Solids 43, 945 1982Google Scholar
26Das, J., Kim, K.B., Xu, W., Wei, B.C., Zhang, Z.F., Wang, W.H., Yi, S.Eckert, J.: Ductile metallic glasses in supercooled martensitic alloys. Mater. Trans. 37, 2606 2006CrossRefGoogle Scholar