Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T04:17:00.234Z Has data issue: false hasContentIssue false

Promotion of phase transformation and single-phase formation in silver-doped Tl–Ba–Ca–Cu–O superconducting thin films

Published online by Cambridge University Press:  31 January 2011

Horng-Show Koo
Affiliation:
Department of Electronics Engineering and Institute of Electronics, National Chiao-Tung University, Hsinchu, 300, Taiwan, Republic of China
Tseung-Yuen Tseng
Affiliation:
Department of Electronics Engineering and Institute of Electronics, National Chiao-Tung University, Hsinchu, 300, Taiwan, Republic of China
Get access

Abstract

Phase transformation and physical characteristics of the spray-pyrolyzed Tl–Ba–Ca–Cu–O superconducting films with 3 mol% silver dopant have been studied using electrical resistivity, x-ray diffraction, and scanning electron microscopy. The major phase formed in the resultant film, annealed at a temperature of 885 °C for 3 min, was found to be the nearly single-phase, high-Tc Tl2Ba2Ca2Cu3Oy (Tl-2223). The multiple phase of Tl2Ba2Ca2Cu3Oy and TlBa2Ca2Cu3Oy (Tl-1223) appeared at annealing temperatures lower and higher than 885 °C. It was also observed that Ag dopant effectively reduces normal resistivity at 300 K and enhances the phase transformation of single-Tl-layer Tl-1223 to double-Tl-layer Tl-2223 phases and further helps to form the nearly single-phase Tl-2223 within a short duration. Critical transition temperature (Tc,zero) and current density (Jc, 77 K, 0 Tesla) of the best resultant film were shown to be 123 K and 5.7 × 104 A/cm2, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kumar, Dhananjay, Sharon, M., Pinto, R., Apte, P. R., Pai, S. P., Purandare, S. C., D'Souza, C. P., Gupta, L. C., and Vijayaraghavan, R., J. Appl. Phys. 76, 1349 (1994).CrossRefGoogle Scholar
2.Satou, M., Yamada, Y., Murase, S., Kitamura, T., and Kamisada, Y., Appl. Phys. Lett. 64, 640 (1994).CrossRefGoogle Scholar
3.Vasanthamohan, N. and Singh, J. P., Supercond. Sci. Technol. 10, 113 (1997).CrossRefGoogle Scholar
4.Jodoit, K., Sonoda, A., Yasuyama, S., and Ohyoshi, A., Jpn. J. Appl. Phys. 30, L221 (1991).Google Scholar
5.Koo, H.S., Hurng, W.M., Lee, W.H., Tseng, T.Y., Chen, M., and Lo, J. R., Appl. Phys. Lett. 62, 3354 (1993).CrossRefGoogle Scholar
6.Tachikawa, K., Zama, K., and Kikuchi, A., Jpn. J. Appl. Phys. 32, L654 (1993).CrossRefGoogle Scholar
7.Deluca, J. A., Karas, P. L., Tkaczyk, J. E., Bednarczyk, P. J., Garbauskas, M. F., Briant, C. L., and Sorensen, D. B., Physica C 205, 21 (1993).CrossRefGoogle Scholar
8.Singh, H. K., Saxena, A. K., and Srivastava, O. N., Supercond. Sci. Technol. 8, 448 (1995).CrossRefGoogle Scholar
9.Koo, H. S., Lo, J. R., Tseng, T. Y., and Lin, C. S., Jpn. J. Appl. Phys. (in press).Google Scholar
10.Koo, H. S., Tu, G. C., and Tseng, T. Y., J. Am. Ceram. Soc. 77, 27 (1994).CrossRefGoogle Scholar
11.Sugise, R., Hirabayashi, M., Terasa, N., Jo, M., Tokumoto, M., Shimomura, T., and Ihara, H., Physica C 157, 131 (1989).CrossRefGoogle Scholar
12.Tang, Y. Q., Sheng, Z.Z., Lou, W. A., Chen, Z. Y., Chan, Y. N., Li, Y. F., Chen, F.T., Salamo, G. J., and Pederson, D. O., Supercond. Sci. Technol. 6, 173 (1993).CrossRefGoogle Scholar
13.Singh, H. K., Saxena, A. K., and Srivastava, O. N., Physica C 273, 181 (1997).CrossRefGoogle Scholar
14.Koo, H. S. and Tseng, T. Y., unpublished.Google Scholar