Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-09T15:30:53.220Z Has data issue: false hasContentIssue false

Promoting secondary nucleation using methane modulations during diamond chemical vapor deposition to produce smoother, harder, and better quality films

Published online by Cambridge University Press:  31 January 2011

N. Ali
Affiliation:
Center for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810–193 Aveiro, Portugal
V.F. Neto
Affiliation:
Center for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810–193 Aveiro, Portugal
J. Gracio
Affiliation:
Center for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810–193 Aveiro, Portugal
Get access

Abstract

In this paper, we present results obtained from a comparison study relating to the deposition of diamond films using two processes, namely, time-modulated chemical vapor deposition (TMCVD) and conventional CVD. Polycrystalline diamond films were deposited onto silicon substrates using both hot-filament CVD and microwave plasma CVD systems. The key feature of TMCVD is that it modulates methane (CH4) flow during diamond CVD, whereas in conventional CVD the CH4 flow is kept constant throughout the deposition process. Films grown using TMCVD were smoother, harder, and displayed better quality than similar films grown using constant CH4 flow during CVD. The advantage of using TMCVD is that it promotes secondary nucleation to occur on existing diamond crystals. Pulsing CH4, consecutively, at high and low concentrations allows the depositing film to maintain its quality in terms of diamond-carbon phase. Films grown under constant CH4 flow during diamond CVD displayed a columnar growth mode, whereas with the time modulated films the growth mode was different. The mechanism of film growth during TMCVD is presented in this paper. The growth rate of films obtained using the hot filament CVD system with constant CH4 flow was higher than the growth rate of time modulated films. However, using the microwave-plasma CVD system, the effect was the contrary and the time-modulated films were grown at a higher rate. The growth rate results are discussed in terms of substrate temperature changes during TMCVD.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

May, P.W., Philos. Trans. R. Soc. London A 358, 473 (2000).CrossRefGoogle Scholar
Ashfold, M.N., May, P.W., Rego, C.A., and Everitt, N.M., Chemical Society Reviews (1994), p. 23.Google Scholar
Ali, N., Ahmed, W., Hassan, I.U., and Rego, C.A., Surf. Eng. 14, 292 (1998).CrossRefGoogle Scholar
Chen, H., Nielsen, M.L., Gold, C.J., Dillon, R.O., DiGregorio, J., and Furtak, T., Thin Solid Films 212, 169 (1992).CrossRefGoogle Scholar
Huang, J.T., Yeh, W.Y., Hwang, J., and Chang, H., Thin Solid Films 315, 35 (1998).CrossRefGoogle Scholar
Lee, D.G. and Singh, R.K., in Beam-Solid Interactions for Materials Synthesis and Characterization, edited by Luzzi, D.E., Heinz, T.F., Iwaki, M., and Jacobson, D.C. (Mater. Res. Soc. Symp. Proc. 354, Pittsburgh, PA, 1995), p. 699.Google Scholar
Fan, Q.H., Pereira, E., Davim, P., Gracio, J., and Tavares, C.J., Surf. Coat. Technol. 126, 111 (2000).CrossRefGoogle Scholar
Maeda, H., Ohtsubo, K., Irie, M., Ohya, N., Kusakabe, K., and Morooka, S., J. Mater. Res. 10, 3115 (1995).CrossRefGoogle Scholar
Locher, R., Wild, C., Herres, N., Behr, D., and Koidl, P., Appl. Phys. Lett. 65, 34 (1994).CrossRefGoogle Scholar
Malshe, A.P., Park, B.S., Brown, W.D., and Naseem, H.A., Diamond Rel. Mater. 8, 1198 (1999).CrossRefGoogle Scholar
Wolter, S.D., Okuzumi, F., Prater, J.T., and Siter, Z., Phys. Status Solidi 186, 331 (2001).3.0.CO;2-1>CrossRefGoogle Scholar
Beake, B.D., Hassan, I.U., Rego, C.A., and Ahmed, W., Diamond Relat. Mater. 9, 1421 (2000).CrossRefGoogle Scholar
Zhou, D., Stevie, F.A., and Chow, L., J. Vac. Sci. Technol., A 17, 1139 (2001).Google Scholar
Chen, Q., Gruen, D.M., Krauss, A.R., Corrigan, T.D., Witck, M., Swain, G.M., J. Electrochem. Soc. 148, L4 (2001).CrossRefGoogle Scholar
Sharda, T., Umeno, M., Soga, T. et al., Appl. Phys. Lett. 77, 4304 (2001).CrossRefGoogle Scholar
Gu, C., Jiang, X., and Jin, Z., J. Vac. Sci. Technol. 19, 962 (2001).CrossRefGoogle Scholar
Chen, L.C., Kichambare, P.D., and Chen, K.H., J. Appl. Phys. 89, 753 (2001).CrossRefGoogle Scholar
Ye, H., Sun, C.Q., and Huang, H., Appl. Phys. Lett. 78, 1826 (2001).CrossRefGoogle Scholar
Park, K.H., Choi, S., Lee, K.M., Oh, S., Lee, S., Koh, K.H., J. Korean Phys. Soc. 37, L153 (2000).Google Scholar
Kru¨ger, J.K., Embs, J.P., and Lukas, S., et al., J. Appl. Phys. 87, 74 (2000).CrossRefGoogle Scholar
Sharda, T., Soga, T., Jimbo, T., and Umeno, M., Diamond Relat. Mater. 9, 1333 (2000).CrossRefGoogle Scholar
Zhou, D., McCauley, T.G., Gruen, D.M., J. Appl. Phys. 83, 540 (1998).CrossRefGoogle Scholar
Milewski, P.D., J. Soc. Inf. Disp. 6, 143 (1998).CrossRefGoogle Scholar
Yagi, H., Ide, T., and Mori, Y., J. Mater. Res. 13, 1724 (1998).CrossRefGoogle Scholar
McCauley, T.G., Noguchi, T., and Miyasaka, Y., Appl. Phys. Lett. 73, 1646 (1998).CrossRefGoogle Scholar
Peng, J., Hong, P., and Szabo, D.V., J. Mater. Sci. Technol. 14, 173 (1998).Google Scholar
Brenner, J.R., Harkness, J.B.L., and Marshall, C.L., Nanostruct. Mater. 8, 1 (1997).CrossRefGoogle Scholar
Lee, J., Hong, B., and Collins, R.W., Appl. Phys. Lett. 69, 1716 (1996).CrossRefGoogle Scholar
McGinnis, S.P., Kelly, M.A., and Alvis, R.L., J. Appl. Phys. 79, 170 (1996).CrossRefGoogle Scholar
Fan, Q.H., Ali, N., Kousar, Y., Ahmed, W., and Gracio, J., J. Mater. Res. 17, 1563 (2002).CrossRefGoogle Scholar
Silva, F., Gicquel, A., Chiron, A., and Achard, J., Diamond Relat. Mater. 9, 1965 (2000).CrossRefGoogle Scholar
Gicquel, A., Hassouni, K., and Silva, F., J. Electrochem. Soc. 14716, 2218 (2000).CrossRefGoogle Scholar
Zhu, W., Badzian, A.R., and Messier, R., in Diamond Optics 111, San Diego, CA, 1990 (SPIE Bellingham, WA, 1990), p. 187.Google Scholar
Chen, C.F. and Hong, T.M., Surf. Coat. Technol. 5, 143 (1993).CrossRefGoogle Scholar
Kumar, S., Dixit, P.N., Sarangi, D., and Bhattacharyya, R., J. Appl. Phys. 85, 3866 (1999).CrossRefGoogle Scholar
Fan, Q.H., Gracio, J., and Pereira, E., J. Appl. Phys. 87, 2880 (2000).CrossRefGoogle Scholar
Wagner, J., Wild, C., and Koidl, P., Appl. Phys. Lett. 59, 779 (1991).CrossRefGoogle Scholar
Fan, Q.H., Ph.D. Thesis, Department of Physics, University of Aveiro, Aveiro, Portugal (1998).Google Scholar
Ali, N., Fan, Q.H., Ahmed, W., and Gracio, J., Thin Solid Films (in press).Google Scholar
Kulisch, W., Ackermann, L., and Sobisch, G., Phys. Status Solidi A 154, 155 (1996).CrossRefGoogle Scholar
Ager, J.W. and Drory, M.D., Phys. Rev. B 48, 2601 (1993).CrossRefGoogle Scholar
Hayashi, Y., Drawl, W., and Messier, R., Jpn. J. Appl. Phys. 31, L194 (1992).Google Scholar